Math Reference U

Rustom Patel

Table of Contents

Basics 2
Symbols 2
Equations 3
Physics. 5
General 6
Adding 7
Subtracting 8
Multiplying 9
Dividing 10
Integers 11
Fractions 13
Percent 17
Ratios 18
Exponents 19
Square Roots 23
Rational Exponents 25
Exponential Equations 28
Rational Expressions 30
Operating Radicals 37
Statistics 40
Prime Numbers 41
Rational Numbers 43
Order of Operation 44
Counter Example 45
System International (S.I.) 46
Scientific Notation. 49
Significant Digits 50
Rounding 51
Algebra 52
Polynomials 52
Collecting Like Terms 55
Distributive Property. 64
Factoring 65
Solving one step Equations 70
Solving two step Equations 71
Solving multi step Equations 72
Solving Equations with Fractions 73
Rearranging Formulas 74
Word Problems 75
Series and Sequences. 79
Pascal's Triangle 85
Binomial Theorem. 86
Financial Math 87
Graphing 89
Direct and Partial Variation 89
Plotting 90
Slope. 92
Slope Formula 95
Rate of Change 96
Identifying linear and Non-linear relations 97
Collinear 99
Graphing Equations. 100
Equation of a line 101
Standard Form 102
Intercepts 103
Length of a Line Segment 104
Parallel and Perpendicular Lines 106
Finding Equations 110
Making Equations 113
Linear Systems 114
Types of Graphs 124
Quadratic Functions 126
Transformations 146
Geometry 154
Linear Measurements 154
Lines 155
Polygons 156
Perimeter 158
Area 160
Circle 164
Area of Composite Figures 168
Angles 170
Triangles and Angles 173
Pythagorean Theorem 176
Quadrilaterals and Angles 177
Polygons and Angle Relationships 179
Midpoints and Medians 181
Geometric Figures. 184
Optimization of Measurements 187
Trigonometry 188
Advanced Functions 230
Interval Notation 230
Power Functions 231
Finite Differences 235
Equations and Graphs of Polynomial Functions 237
Odd and Even Functions 239
Transformations of Power Functions 240
Polynomial Division 243
The Remainder Theorem 245
The Factor Theorem 248
Integral and Rational Zero Theorem 249
Families of Polynomial Functions 250
Solving Polynomial Equations 252
Polynomial Inequalities 255
Rational Functions 257
Solving Rational Equations 262
Solving Rational Inequalities 263
Special Case 264
Radian Measure 265
Unit Circle 267
Equivalent Trigonometric Expression 269
Co-related and co-functioned Identities. 270
Compound Angle Formulas 273
Double Angle Formulas 275
Advanced Trigonometric Identities. 276
Trigonometric Functions 278
Transforming Trigonometric Functions 279
Solving Trigonometric Equations 282
Exponential Function 284
Logarithms 287
Sums and Differences of Functions 295
Products and Quotients of Functions 296
Composite Functions 297
Rate of Change 299
Increasing and Decreasing Functions. 301
Calculus 302
Limits 302
Continuity 306
Limits involved Infinity 307
Derivatives 309
Differentiability 310
The Constant and Power Rule. 311
The Sum, Difference, and Polynomial Rules 314
Velocity and Acceleration 315
The Product Rule. 316
The Chain Rule 317
Intervals of Increase and Decrease 318
Minimums, Maximums, and the First Derivative 319
Inflection Point, Concavity, and the Second Derivative. 320
Oblique Asymptotes 321
Curve Sketching 322
Limits of Trigonometric Functions 323
Derivatives of Trigonometric Functions 325
Derivatives of Exponential Functions 326
The Natural Logarithm 327
Derivatives of Exponential Functions. 328
Please Note 1
Multiplication Chart (12 X 12) 9
Number Line 11
Fractions, Decimals, Percents Conversions Chart 16
Exponent Law 22
Squares and Square Roots 23
Prime Numbers Chart (1-100) 41
Radians and Degrees 222
Power Functions Summary 234

Please Note ${ }^{1234}$

Please do not disregard this message.

1. The Math Reference U document is not to be distributed and is strictly for personal and referral use.
2. Certain math problems and/or examples may have steps missed or cut from the full problem; also, certain examples are taken from other sources not cited therefore contents of this package is simply an organization of examples and lessons.
3. All information covered in this package is not professionally edited therefore be aware that there is not 100% accurate information in this package.
4. Please refrain from misuse of this package and only use it for its intended purpose.

For any comments or suggestions, please contact Rustom Patel by email:
Rustom.Patel@hotmail.com. Also, visit www.rustompatel.com for other projects done by Rustom Patel. Thank you.

Shortcuts

- Ctrl + F
- Ctrl + Page up
- Ctrl + Page down
- Ctrl + Home
- Ctrl + End
- Ctrl + Shift
- Ctrl + Click

Find a selection in the text (Look for bold text for search terms)
Move down a whole page
Move up a whole page
Go to the first page
Go to the last page
Highlight words
Highlight a line

Basics

Symbols

Symbol	Term	Negation	
+	Addition operator: plus, add, sum	-	
-	Subtraction operator: minus, subtract, difference	+	
\times	Multiplication operator: multiply, product, sum	\div	
\cdot	Bullet operator: multiply; notations: variable or constant to bracket or variable	\div	
\div	Division operator: divide, quotient	\times	
/	Slash operator: divide; notations: fractional	\times	
$=$	Equals: Total of equation	\#	
\approx	Almost equal or approximately	\nsim	
$<$	Less than: requires 2 constants or variables	*	
\leq	Less than or equal: requires 2 constants or variables	\pm	
$>$	Greater than: requires 2 constants or variables	\ngtr	
\geq	Greater than or equal: requires 2 constants or variables	\pm	
$\pm \mp$	Plus minus: positive to negative; Minus Plus: negative to positive	$\mp \pm$	
∞	Infinity	$-\infty$	
-	Degree (360)		
Δ	Increment; Change in; Delta; or triangle		
∇	Decline		
π	Pi constant: 3.1415926535898	$-\pi$	
ϕ	Phi constant/golden ratio: 1.61803399	$-\phi$	
$\sqrt{ }$	Square root operator; negation to square	$\mathrm{y}^{\mathrm{x}} \wedge$	
$\mathbf{y}^{\mathrm{x}} \wedge$	Exponent operator: to the power of, multiply; Exponent operator	$\sqrt{ }$	
$\mathbf{y x}_{\mathbf{-}}$	Subscript: Used to array variables		
\%	Percentage: expressed as a fraction when over 100 or decimal when less than 1		
!	Factorial: multiplies all terms from an integer down to 1, can't be less than 1		
	Isolated term		
() []	Brackets: alternate between square and curved; also interval notation		
L	Right Angle: 90 degrees		
\angle	Angle		
\Varangle	Measured Angle		
ষ	Spherical angle		
b	Right angle with arc		
Δ	Right triangle		
\#	Equal and parallel to		
\perp	Perpendicular to		
ł	Does not divide		
\|		Parallel	\#
:	Ratio: comparing 2 or more values		
E	Element of: relations		
\mathbb{R}	Real Number		
\because	Because; since		
\therefore	Therefore		
U	Union: or inclusive		
θ	Theta: objective angle to find		
α	Alpha: variable notation		
■	End		

Equations

Name	Equation
Mixed Number	$z \frac{x}{y}=(y z+x)$
Fraction Exponent	$\left(\frac{a}{b}\right)^{c}=\frac{a^{c}}{b^{c}}$
Multiplying Exponents	$a^{n} \times a^{m}=a^{n+m}$
Dividing Exponents	$a^{n} \times a^{m}=a^{n-m}$
Bracket Exponent	$\left(a^{b}\right)^{c}=a^{b c}$
Distributive Property Exponent	$(a b)^{c}=\left(a^{1} b^{1}\right)^{c}=\left(a^{1 c} b^{1 c}\right)$
Distributive Property	$a(x+y)=a x+a y$
Length Line Segment	$L=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Midpoint Line Segment	$\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
Line Substitution	$y-y_{1}=m\left(x-x_{1}\right)$
Circle Formula	$x^{2}+y^{2}=r^{2}$
Circle Centroid	$(x-p)^{2}+(y-q)^{2}=r^{2}$
Sum of Interior Angles	$180(n-2)$
Factoring Trinomial	$a x^{2}+b x+c$
Quadratic Function	$y=a x^{2}+k$
Expanded Quadratic Function	$y=a(x-h)^{2}+k$
Square Quadratic Function	$y=a x^{2}+b x+c$
Quadratic Formula	$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
Trigonometry Functions	SOH-CAH-TOA
Sine Law	$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
Reverse Sine Law	$\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}$

Physics

Name

Equation

Density

$$
D=\frac{m}{V}
$$

Motion

$$
d=v-t
$$

Average Velocity and
Acceleration

$$
a=\frac{v_{f}-v_{i}}{t}
$$

Uniform Motion with Constant
Acceleration

$$
d=v_{i} \cdot t+\frac{1}{2} \cdot a \cdot t^{2}
$$

Newton's Second Law

$$
\begin{gathered}
F=m-a \\
F_{g}=\frac{G \cdot m_{1} \cdot m_{2}}{d^{2}} \\
p=m-v
\end{gathered}
$$

Momentum

Work and Power

$$
W=F-d P=\frac{W}{t}
$$

Energy
$K . E .=\frac{1}{2} \cdot m \cdot v^{2}$
Static Electricity

$$
F_{E}=\frac{k \cdot q_{1} \cdot q_{2}}{d^{2}}
$$

Current Electricity

$$
\begin{aligned}
& V=\frac{W}{q} l=\frac{q}{t} \\
& W=V \cdot I \cdot t \\
& P=V \cdot I
\end{aligned}
$$

Energy Transfer

$$
q=m \cdot c \Delta T
$$

General

Terms

- Expression: a mathematical sentence without an equal sign (=). The only way to solve an expression is through substitution
- Equation: a mathematical sentence with an equal sign (=)
- An equation is a math statement that states 2 expressions are equal

Example: $\quad-3 x+3=2 x-2$

- A solution is the value of the variable that makes an equation

$$
\begin{array}{ll}
\text { Example: } & -3 x+3=2 x-2 \\
& -3 x-2 x=-2-3 \\
& \frac{-5 x}{-5}=-\frac{-5}{-5} \\
& x=1
\end{array}
$$

- A formula describes an algebraic relationship between 2 or more variables
- Q.E.D. means that what you have set out to prove has been proven true

Global Variables

- A : Area
- P : Perimeter
- V : Volume
- l : Length
- $\quad w$: Width
- h : Height
- b : Base
- m : Slope
- $v:$ Velocity
- d : Distance
- t : Time
- I: Interest
- $\quad i$: Imaginary number
- $\quad p$: Principle
- $\quad r$: Rate or hypotenuse
- $\quad x$: Horizontal axis
- y : Vertical axis

Adding

Adding in sequence in linear
Example: $\quad 25+37=62$
Adding with multiple values in linear
Example: $\quad 25+25+89+45$

- When adding with decimals, align decimals up then solve

Subtracting

Subtracting in sequence in linear

$$
\text { Example: } \quad 100-25=75
$$

Subtracting with multiple values in linear

Example: $\quad 100-25-50=25$

- When subtracting in professional, greater number goes on top
- You can only subtract 2 values at a time
- If the greater value is NOT first or on top, the value of the 2 digits will be negative
- When subtracting with decimals, align all decimals up and solve

Example: $\quad 25-100=-75$

Multiplying

Multiplying in sequence in linear
Example: $\quad 2 \times 50=100$
Multiplying multiple values in linear
Example: $\quad 2 \times 2 \times 8=32$

- When multiplying with multiple values in professional, every new value, in the result, insert a 0
- When multiplying with decimals, align decimals up, solve the question without decimals, then, for every digit before the decimal, is how many decimal places are in the result

Multiplication Chart (12 X 12)

\times	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$
$\mathbf{1}$	1	2	3	4	5	6	7	8	9	10	11	12
$\mathbf{2}$	2	4	6	8	10	12	14	16	18	20	22	24
$\mathbf{3}$	3	6	9	12	15	18	21	24	27	30	33	36
$\mathbf{4}$	4	8	12	16	20	24	28	32	36	40	44	48
$\mathbf{5}$	5	10	15	20	25	30	35	40	45	50	55	60
$\mathbf{6}$	6	12	18	24	30	36	42	48	54	60	66	72
$\mathbf{7}$	7	14	21	28	35	42	49	56	63	70	77	84
$\mathbf{8}$	8	16	24	32	40	48	56	64	72	80	88	96
$\mathbf{9}$	9	18	27	36	45	54	63	72	81	90	99	108
$\mathbf{1 0}$	10	20	30	40	50	60	70	80	90	100	110	120
$\mathbf{1 1}$	11	22	33	44	55	66	77	88	99	110	121	132
$\mathbf{1 2}$	12	24	36	48	60	72	84	96	108	120	132	144

Dividing

Dividing in sequence in linear

$$
\text { Example: } \quad 50 \div 2=25
$$

Dividing multiple values in linear

$$
\text { Example: } \quad 50 \div 2 \div 5=5
$$

- Divide only 2 values at a time
- In professional, smaller number goes outside and the greater number goes inside leaving the value for the top
- When dividing with decimals, convert all the number to whole numbers, then divide

Integers

Adding integers

- When the negative integer is next to a positive symbol or addition operator, change it to a negative operator

Example: $\quad 5+(-7)=5-7=-2$

- When there are 2 negative integers, subtract the two values together and you will end up with a negative result

Example: $\quad-3+(-4)=-3-4=-7$

- When given several different integers, do it in order

Example: $\quad-2+(-4)+(-5)=-2-4-5=-11$

Subtracting integers

- When a negative operator is next to a negative integer, the integer and operator both become positive

Example: $\quad 5-(-3)=5+3=8$
Example: $\quad-8-(-3)=-8+3=-5$
Example:
$5+(-4)-(-5)-6=5-4+5-6=0$

Number Line
Effective way to add and subtract integers

Multiplying and dividing integers

- When multiplying or dividing integers, there is a very simple rule to determine if the result will be negative or positive

\times or \div	+	-
+	+	-
-	-	+

- The chart above shows that when multiplying 2 positive integers or 2 negative integers, the result is positive; while a positive and a negative integer have a negative result

Example: $\quad-10 \times 2=-20$
Example: $\quad-10 \div(-2)=5$
Example: $\quad 10 \div(-5)=-2$

Fractions

Using Fractions

- The numerator is the number on top and denominator is the number on the bottom
- The numerator is always the amount of the whole that is being taken up while the denominator tells you what the whole is out of

Formula: $\quad \frac{\text { Numerator }}{\text { Denominator }}$

- Fractions are can be solved into decimal by dividing the numerator over denominator

Example in professional: $\quad \frac{2}{5}$
Example in linear: $\quad 2 / 5$
Example in decimal: $\quad 0.4$

- If the denominator is 1 and the numerator is a whole number, then the fraction in lowest terms is the numerator

Example: $\quad \frac{4}{1}=4$

- When you are trying to convert the fraction into lowest terms, be sure that whatever is done to the numerator is done to the denominator. Remember that a numerator or denominator can't be a decimal, they must be whole numbers

Example: $\quad \frac{10}{2}=\frac{10 / 2}{2 / 2}=\frac{5}{1}=5$

- If you ever require to convert a whole number in a fraction, remember how to identify a whole number

Example: $\quad 6=\frac{6}{1}$

Reciprocals

- Reciprocals can be used on either fractions or numbers by using the opposite case
- If you want to find the reciprocal of a whole number, put the number over 1 (since a whole number, when expressed as a fraction is on top of 1 , flip the 2 values, therefore the whole number becomes the denominator)

Example: $\quad 5=\frac{5}{1}=\frac{1}{5}$

- If you want to find the reciprocal of a fraction, flip the numerator and denominator

Example: $\quad \frac{2}{7}=\frac{7}{2}$

Adding Fractions

- Find the lowest common denominator (LCD) before multiplying all values in a fraction by a set digit, then the other fraction by a different digit

Example: $\quad \frac{2}{5}+\frac{3}{10}$

- To solve, you must first multiply the first fraction by 2 ; numerator and denominator. Then you will get $\frac{2 \times 2}{5 \times 2}+\frac{3}{10}=\frac{4}{10}+\frac{3}{10}$ then simply add the numerators up to get $\frac{7}{10}$
- You always want to have common denominators when adding
- Only add the numerators and not the denominators
- Remember to always express in lowest terms by dividing the whole fraction by a set value
- Another way of getting the LCD is by using prime factoring, which means by finding the values of denominators through multiplying prime numbers. Start with factors of the first number then add any missing factors from the other number

Example: $\quad \frac{1}{6}$ and $\frac{1}{8}, \mathrm{LCD}=24$

$$
\begin{aligned}
& 6=2 \times 3,8=2 \times 2 \times 2 \\
& L C D=2 \times 3 \times 2 \times 2=24
\end{aligned}
$$

Subtracting Fractions

- Find a common denominator before multiplying all values in a fraction by a set digit, then the other fraction by a different digit. Then subtract numerators
- You always want to have common denominators when subtracting
- Only subtract the numerators and not the denominators

Example: $\quad \frac{4}{6}-\frac{3}{5}=\frac{4 \times 5}{6 \times 5}-\frac{3 \times 6}{5 \times 6}=\frac{20}{30}-\frac{18}{30}=\frac{2}{30}=\frac{1}{15}$

Multiplying Fractions

- Simply multiply the numerator to the numerator and denominator to denominator regardless of the values

Example: $\quad \frac{3}{5} \times \frac{2}{4}=\frac{6}{20}$

- Remember to always place in lowest terms by dividing all values by a set digit.

Example: $\quad \frac{6}{20}=\frac{3}{10}$

- You can also simplify your question by converting opposite numerators and denominators into lowest common numbers

Example: $\quad \frac{8}{9} \times \frac{3}{4}=\frac{2}{3} \times \frac{1}{1}=\frac{2}{3}$

Dividing Fractions

- Leave the first fraction along and then convert the second fraction to its reciprocal, then multiply

Example: $\quad \frac{2}{6} \div \frac{7}{8}=\frac{2}{6} \times \frac{8}{7}=\frac{16}{42}=\frac{8}{21}$

- You can also simplify your question by converting opposite numerators and denominators into lowest common numbers after the reciprocal is done

Example: $\quad \frac{2}{5} \times \frac{4}{9}=\frac{2}{5} \times \frac{9}{4}=\frac{1}{5} \times \frac{9}{2}=\frac{9}{10}$

Mixed Numbers

- A mixed number occurs when the numerator is greater than the denominator

Example: $\quad \frac{21}{5}$

- To solve this, see how many times the denominator goes into the numerator, write the result before the fraction and leave the remainder where the numerator was with the same denominator

Example: $\quad \frac{21}{5}=4 \frac{1}{5}$

- To convert a mixed number into a fraction, multiply the denominator by the whole number and add the numerator

$$
\begin{array}{ll}
\text { Formula: } & z \frac{x}{y}=(y z+x) \\
\text { Example: } & 4 \frac{1}{5}=\frac{21}{5}
\end{array}
$$

Decimals

- A decimal less than 1 can become a fraction. Given that in percent, a number less than 1 is only out of 100 , thus, any decimal given over 100 is a fraction. Then express in lowest terms

Example: $\quad 0.25=\frac{25}{100}=\frac{1}{4}$

- To get a decimal from a fraction, divide the numerator by the denominator

Example: $\quad \frac{1}{5}=0.2$

Fractions, Decimals, Percents Conversions Chart

Fractions	Decimals	Percents	Fractions	Decimals	Percents
$\mathbf{1}$	1.0	100%	$1 / 6$	0.16	16.6%
$\mathbf{1} \mathbf{2}$	0.5	50%	$1 / 8$	0.125	12.5%
$\mathbf{1} / \mathbf{3}$	0.3	33.3%	$1 / 10$	0.1	10%
$\mathbf{1} \mathbf{4}$	0.25	25%	$2 / 3$	0.6	66.6%
$\mathbf{1} / \mathbf{5}$	0.2	20%	$3 / 4$	0.75	75%

Percent

Fractions and Percentages are very similar. To find a percentage of something, multiply the percent to the number and divide by 100

Example: $\quad 25 \%$ of 300

$$
300 \times 25 \div 100=75
$$

- You can also convert the percentage into percent by making it less than one or dividing that value by 100

Example: 15\% of 250

$$
250 \times 0.15=37.5
$$

- In a pie chart, you may want to find the percent of a section. When given the angle, you divide it by 360 and multiply by 100

Example: $\quad 90^{\circ} \div 360^{\circ} \times 100=25 \%$

Ratios

Ratios are when you are comparing 1 thing to another
Example: 1:2

- In this example, it is for everyone item, there is 2 , therefore the ratio is 1 to 2
- You always want to express in lowest terms

Example: $\quad 4: 6: 16=2: 3: 8$

- In some cases, a question may give you a set of ratios and another with a missing value or values. Simply find what the alternative number was multiplied or divided by

Example: $\quad 4: 6: 8=2: ?: 4$

$$
\because \frac{4}{2}=2 ; \frac{6}{2}=3
$$

- All that is required is one relation to be full

Example: ?:5:10=5:?:50

$$
\begin{aligned}
& 10 \times 5=50 ; 5 \times 5=25 ; \frac{5}{5}=1 \\
& \therefore 1: 5: 10=5: 25: 50
\end{aligned}
$$

- Ratios can also be expressed as fractions by rearranging the ratio; numerator and denominator Example: $\quad 3: 6=\frac{3}{6}=\frac{1}{2}$
- Ratios are also used for probability by comparing the likeliness of something against the total

Example: 4:6

Exponents

Exponents can be expressed as a number to the power of or square(s)
Formula: $\quad x^{y}, x=$ Base, $y=$ Exponent
Example: $\quad 2^{3}$

- The example is expressing 2 to the power of 3 , there for, 2 is multiplied by 2 three times.

Example in professional: $\quad 2^{3}=2 \times 2 \times 2=8$
Example in linear: $\quad 2^{\wedge} 3$

- When you have a negative base, there are two simple ways to solve
- Write it in expanded form
- If the exponent is even, the number is positive and vice-versa
- Ensure that the negative exponent is in brackets

Example: $\quad(-3)^{3}=(-3) \times(-3) \times(-3)=-27$

$$
-3^{3}=-3 \times 3 \times 3=-27
$$

Example: $\quad(-4)^{4}=256$

$$
-4^{4}=-256
$$

- When we have a negative exponent, we use the reciprocal of the number converting it into a denominator bringing the exponent with us, and making it positive

Example: $\quad 4^{-3}=\frac{1}{4^{3}}=0.015625$

- Express as a power of

Example: \quad Express as a power of $10: 100=10^{2}$
Example: \quad Express as a power of $2: 128=2^{7}$

Exponents with Fractional Bases

- Simply write in expanded form

Example: $\quad\left(\frac{2}{3}\right)^{2}=\frac{2}{3} \times \frac{2}{3} \times \frac{2}{3}=\frac{8}{27}$

- Brackets are necessary for otherwise the exponent only applies to either the numerator or denominator, not the whole fraction or base

Formula: $\quad\left(\frac{a}{b}\right)^{c}=\frac{a^{c}}{b^{c}}$

- Negative fractions usually apply to the numerator

Example: $\quad\left(-\frac{2}{3}\right)^{2}=\left(\frac{-2}{3}\right)^{2}=\frac{4}{9}$

Multiplying and dividing exponents

- When multiplying exponents, we simply add the exponents together ONLY if the bases are equivalent

Formula: $\quad a^{n} \times a^{m}=a^{n+m}$
Example: $\quad 5^{2} \times 5^{3}=5^{2+3}=5^{5}=3125$

- When dividing exponents, we simply subtract the exponents together ONLY if the bases are equivalent

Formula: $\quad a^{n} \div a^{m}=a^{n-m}$
Example: $\quad 2^{5} \div 2^{3}=2^{5-3}=2^{2}=4$

Brackets and exponents

- When we have an exponent inside a bracket and an exponent outside the bracket, we multiply the 2 exponents

Formula: $\quad\left(a^{b}\right)^{c}=a^{b c}$
Example: $\quad\left(4^{2}\right)^{3}=4^{2 \times 3}=4^{6}=4096$

Distributive property with exponents

- When there are 2 values inside a bracket, both with exponents and an exponent outside the bracket, the exponent outside, is multiplied to all.

Formula: $\quad(a b)^{c}=\left(a^{1} b^{1}\right)^{c}=\left(a^{1 c} b^{1 c}\right)$
Example: $\quad\left(a^{2} b^{3}\right)^{2}=\left(a^{2 \times 2} b^{3 \times 2}\right)=a^{4} b^{6}$
Example: $\quad \frac{\left(2 a b^{2}\right)^{2} \times\left(3 a^{3} b^{2}\right)^{2}}{2 a b^{3}}=\frac{\left(2^{2} a^{2} b^{4}\right) \times\left(3^{2} a^{6} b^{4}\right)}{2 a b^{3}}=\frac{\left(4 a^{2} b^{4}\right) \times\left(9 a^{6} b^{4}\right)}{2 a b^{2}}=\frac{36 a^{8} b^{5}}{2 a b^{2}}=18 a^{7} b^{5}$

- Anything raised to the power of 0 is 1

$$
\begin{array}{ll}
\text { Formula: } & \\
x^{0}=1 \\
\text { Example: } & 5^{0}=1
\end{array}
$$

- Keep in mind Exponent Laws

Example: $\quad\left(\frac{6 a^{-2} b^{-3}}{2 a^{2} b^{-1}}\right)^{-2}$
$\left(3 a^{-4} b^{-2}\right)^{-2}$
$3^{-2} a^{8} b^{4}$
$\frac{a^{8} b^{4}}{9}$
Example: $\quad \frac{\left(3 x^{3}\right)\left(6 x y^{4}\right)}{-9 x y^{2}}$
$\frac{18 x^{4} y^{5}}{-9 x y^{2}}$
$-2 x^{3} y^{3}$

Exponent Law

Law
Multiplication
Division
Power Law
Power of a product
Power of a quotient
Zero exponent
Negative exponent

Equation
$a^{n} \times a^{m}=a^{m+n}$
$a^{n} \div a^{m}=a^{m-n}$

$$
\left(a^{n}\right)^{m}=a^{n \times m}
$$

$$
(a b)^{m}=a^{m} b^{m}
$$

$$
\begin{gathered}
\left(\frac{a}{b}\right)^{m}=\frac{a^{m}}{b^{m}} \\
a^{0}=1, a \neq 0 \\
a^{-1}=\frac{1}{a^{n}}, a \neq 0
\end{gathered}
$$

Square Roots

A square root is a real number which is squared to make its result

$$
\begin{array}{ll}
\text { Formula: } & \sqrt{x} \\
\text { Example: } & \sqrt{25} \\
& 5^{2}=25 \quad \therefore \sqrt{25}=5
\end{array}
$$

- Square roots are the opposites of squares but when transferred, it carries both positive and negative operations

$$
\begin{array}{ll}
\text { Formula: } & \pm \sqrt{x} \\
\text { Example: } & 3 x^{2}=432 \\
& x^{2}=\frac{432}{3} \\
& x= \pm \sqrt{144} \\
& x=12 \text { or }-12
\end{array}
$$

- Square roots with variables with exponents; to solve, square root any constant and eliminate the exponent

Example:

$$
\sqrt{4 a^{2}}=2 a
$$

Squares and Square Roots

\boldsymbol{x}	$\boldsymbol{x}^{\mathbf{2}}$	$\sqrt{\boldsymbol{x}}$	\boldsymbol{x}	$\boldsymbol{x}^{\mathbf{2}}$	$\sqrt{\boldsymbol{x}}$
$\mathbf{1}$	1	1	9	81	3
$\mathbf{2}$	4	1.414	25	625	5
$\mathbf{3}$	9	1.732	100	10000	10
$\mathbf{4}$	16	2	$1 / 2$	$1 / 4$	0.707
$\mathbf{5}$	25	2.236	$1 / 4$	$1 / 16$	$1 / 2$

- To break a square root, for factoring purposes, find 2 terms that multiply to create the original square root

$$
\begin{array}{ll}
\text { Example: } & x=\frac{2 \pm \sqrt{24}}{2} \\
x & =\frac{2 \pm \sqrt{4} \sqrt{6}}{2}
\end{array}
$$

- When given a negative term within the square root, the result will always be inadmissible or rejected

Example: $\quad \sqrt{-204}=$ Inadmissable, rejected

Rational Exponents

Rational exponents are a combination of square roots and exponents.

- A rational number can be written in a fraction

Formula: $\quad(\sqrt[n]{x})^{m} ; n=$ nth root, $x=$ radicand, $m=$ exponent

- There are 2 forms

Example: $\quad(\sqrt[n]{x})^{m} \rightarrow$ Radical form
Example: $\quad(x)^{\frac{m}{n}} \rightarrow$ Exponent form

- These 2 forms will result in the same value
- Remember that a blank notation on a square root still has the exponent value of 2

Example: $\quad \sqrt{9}=3$

$$
(9)^{\frac{1}{2}}=3
$$

Example: $\quad \sqrt[3]{8}=2$

$$
(8)^{\frac{1}{3}}=2
$$

Example: $\quad \sqrt[4]{16}=2$

$$
(16)^{\frac{1}{4}}=2
$$

- Basic conversion from radical form to exponent form

Formula: $\quad(\sqrt[n]{x})^{m} \rightarrow(x)^{\frac{m}{n}}$

- Working with negative fractional exponents requires conversion into positive to solve

Example: $\quad 7^{-\frac{1}{7}}=\left(\frac{1}{7}\right)^{\frac{1}{7}}=\sqrt[\frac{1}{7}]{7}$

- To solve a radical, the numerator must always be 1

Example: $\quad 5^{-\frac{3}{7}} \rightarrow\left(\frac{1}{5}\right)^{-\frac{3}{7}}=\left(\frac{1}{5}\right)^{3} \times \frac{1}{7}=\sqrt[7]{\left(\frac{1}{5}\right)^{3}}=\sqrt[7]{\frac{1}{125}}$
Example: $\quad 3^{\frac{2}{5}} \rightarrow 3^{2} \times \frac{1}{5}=\sqrt[5]{9}$

- Algebra and rational exponents work similar to the formula
- Denominators for on the index of the radical and the numerator is carried with the radicand Example: $\quad a^{\frac{3}{5}}=\sqrt[5]{a^{3}}$
- Reciprocal the base to get a positive number in the exponent

Example: $\quad\left(\frac{25}{4}\right)^{-\frac{3}{2}}=\left(\frac{4}{25}\right)^{\frac{3}{2}}=\frac{4^{\frac{3}{2}}}{25^{\frac{3}{2}}}=\frac{\left(4^{\frac{1}{2}}\right)^{3}}{\left(25^{\frac{1}{2}}\right)^{3}}=\frac{2^{3}}{5^{3}}=\frac{8}{125}$

- Attempt to simplify when possible

Example: $\quad\left(\frac{-27}{-8}\right)^{\frac{1}{3}}=\frac{3}{2}$
Example: $\quad\left(\sqrt[3]{5^{2}}\right)(\sqrt[3]{5})=\left(5^{\frac{2}{3}}\right)\left(5^{\frac{1}{3}}\right)=5^{\frac{3}{3}}=5$
Example: $\quad\left[(\sqrt{125})^{4}\right]^{\frac{1}{6}}=(\sqrt{125})^{\frac{4}{6}}=125^{\frac{1}{3}}=5$
Example: $\quad \sqrt[3]{\sqrt{64}} \rightarrow \sqrt[3]{8}=2 \rightarrow\left(64^{\frac{1}{2}}\right)^{\frac{1}{3}}=64^{\frac{1}{6}}=\sqrt[6]{64}=2$
Example: $\quad\left(81 a^{8} b^{4}\right)^{\frac{1}{4}}=3 a^{2} b$

- When simplifying, fist match the bases when working with more than 1 polynomial
- If the bases are the same, eliminate bases and solve for the exponent

Example: $\quad 3^{x+3}=81$

$$
3^{x+3}=3^{4}
$$

$$
x+3=4
$$

$$
x=4-3
$$

$$
x=1
$$

Example: $\quad 10^{2 x+1}=10000$

$$
10^{2 x+1}=10^{3}
$$

$$
2 x+1=3
$$

$$
2 x=2
$$

$$
x=1
$$

- Remember law of exponents

$$
\begin{array}{ll}
\text { Example: } & \frac{1}{\sqrt[3]{a}}=a^{-\frac{1}{3}} \\
\text { Example: } & 8^{\frac{2}{3}}=\sqrt[3]{8^{2}}=4 \\
\text { Example: } & (-8)^{-\frac{5}{3}}=\frac{1}{\sqrt[3]{-8^{5}}}=-\frac{1}{32} \\
\text { Example: } & \sqrt{\sqrt[5]{4 a^{4}}}=\sqrt{4^{\frac{1}{5}} a^{\frac{4}{5}}}=2^{\frac{1}{5}} a^{\frac{2}{5}} \\
\text { Example: } & 0.008^{-\frac{1}{3}}=\frac{1}{125^{\frac{1}{3}}}=\sqrt[3]{125}=5
\end{array}
$$

Exponential Equations

Equations in which the variables are exponents. In order to solve, the bases must be the same for all polynomials.

- Expand the equation to solve
- Where the bases are the same, the exponents are equal

Formula: $\quad x^{m}=x^{n} ; m=n ; a \neq-1,0,1$
Example: $\quad 2^{3 x+4}=4^{2 x-5}$
(2) $)^{3 x+4}=\left(2^{2}\right)^{2 x-5}$
$2^{3 x+4}=2^{4 x-10}$
$3 x+4=4 x-10$
$x=14$
Example: $\quad 9^{-2 x+1}=27^{3 x-2}$
$\left(3^{2}\right)^{-2 x+1}=\left(3^{3}\right)^{3 x-2}$
$3^{-4 x+2}=3^{9 x-6}$
$-4 x+2=9 x-6$
$x=\frac{8}{13}$

- Remember to follow law of exponents

Example:

$$
\begin{aligned}
& 2\left(4^{x+2}\right)=1 \\
& \frac{\left(2\left(4^{x+2}\right)\right)}{2}=\frac{1}{2} \\
& 4^{x}+2=\frac{1}{2} \\
& \left(2^{2}\right)^{x}+2=2^{-1} \\
& 2 x+4=-1 \\
& x=-\frac{5}{2}
\end{aligned}
$$

Example: $\quad 3^{x^{2}-2 x}=3^{x-2}$
$x^{2}-2 x=x-2$
$x^{2}-2 x-x-2=0$
$x^{2}-3 x+2=0$
$(x-2)(x-1)=0$
$\therefore x=2, x=1$

- Common factor when necessary

Example: $\quad 2^{a+5}+2^{a}=1056$

$$
\left(2^{a}\right)\left(2^{5}\right)+2^{a}=1056
$$

$2^{a}\left(2+2^{5}\right)=1056$
$2^{a}(66)=1056$
$\frac{2^{a}(66)}{66}=\frac{1056}{66}$
$2^{a}=16$
$a=8$
Example: $\quad 3^{g+3}-3^{g+2}=1458$
$\left(3^{g}\right)\left(3^{3}\right)-\left(3^{g}\right)\left(3^{2}\right)=1458$
$3^{g}\left(3^{3}-3^{2}\right)=1458$
$\frac{3^{g}(18)}{18}=\frac{1458}{18}$
$3^{g}=81$
$3^{g}=3^{4}$
$g=4$
Example: $\quad 2^{x+3}+2^{x}=288$
$\left(2^{x}\right)\left(2^{3}\right)+\left(2^{x}\right)=288$
$2^{x}\left(1+2^{3}\right)=288$
$\frac{2^{x}(9)}{9}=\frac{288}{9}$
$2^{x}=32$
$2^{x}=2^{5}$
$x=5$

Rational Expressions

Expressions that include variables within polynomials and are rational (fraction).

- Restrictions are numbers that the variable cannot equal
- A restriction is made so that an answer will not equal 0
- Look for the restriction in the factoring step of the expression and the denominator
- Solve and state the restriction

Example: $\quad \frac{24 a^{3} b^{2}}{8 a b}$
$3 a^{2 b}$
$\therefore a, b \neq 0$
Example: $\quad \frac{a^{2}+4 a}{a^{2}-4 a}$
$\frac{a(a+3)}{a(a-4)}$
$\frac{a+3}{a-4}$
$\therefore a \neq 0,4$
Example: $\quad \frac{x^{2}-4}{5 x+10}$
$\frac{(x-2)(x+2)}{5(x+2)}$
$\frac{x-2}{5}$
$\therefore x \neq-2$
Example: $\quad \frac{1-4 y^{2}}{8 y^{2}-2}$
$\frac{(1-2 y)(1+2 y)}{2\left(4 y^{2}-1\right)}$
$\frac{(1-2 y)(1+2 y)}{2(2 y-1)(2 y+1)}$
$\frac{-(1-2 y)}{2(y-1)}$
$\therefore y \neq \frac{1}{2},-\frac{1}{2}$

- Watch for difference of squares and trinomial factoring

$$
\begin{aligned}
& \text { Example: } \quad \frac{x^{2}-8 x+15}{x^{2}-25} \\
& \frac{(x-5)(x-3)}{(x-5)(x+5)} \\
& \frac{(x-3)}{x+5} \\
& \therefore x \neq 5,-5 \\
& \text { Example: } \frac{6 x^{2}-13 x+6}{8 x^{2}-6 x-9} \\
& =\frac{(3 x-2)(2 x-3)}{(2 x-3)(4 x+3)} \\
& =\frac{3 x-2}{4 x+3} \\
& \therefore x \neq \frac{3}{2},-\frac{3}{4}
\end{aligned}
$$

Example: $\quad \frac{2 m^{2}-m n-n^{2}}{4 m^{2}-4 m n-3 n^{2}}$

$$
\begin{aligned}
& =\frac{(m-n)(2 m+n)}{(2 m-3 n)(2 m+n)} \\
& =\frac{(m-n)}{2 m-3 n} \\
& \therefore m \neq \frac{3 n}{2},-\frac{n}{2}
\end{aligned}
$$

- Always watch for common factors

Example: $\quad \frac{8 y^{2}-10 x y}{4 y}$

$$
\begin{aligned}
& \frac{2 y(4 y-5 x)}{4 y} \\
& \frac{4 y-5 x}{2 y} \\
& \therefore y \neq 0
\end{aligned}
$$

Multiplying and dividing rational expressions

- Common factor, cross multiply, reduce, and then multiply

Example: $\quad \frac{8 m^{3}}{3 n^{2}} \times \frac{6 n}{5 m^{2}}$
$\frac{8 m}{n} \times \frac{2}{5}$
$\frac{16 m}{5 n}$
$\therefore m, n \neq 0$
Example: $\quad \frac{15 a b^{2}}{4 c} \div \frac{8 a b c}{-3}$
$\frac{15 a b^{2}}{4 c} \times \frac{-3}{8 a b c}$
$\frac{15 b}{4 c} \times-\frac{3}{8 c}$
$-\frac{45 b}{32 c^{2}}$
$\therefore a, b, c \neq 0$
Example: $\quad \frac{x^{2}-4}{x+3} \div \frac{4 x-8}{3 x+9}$
$\frac{(x+2)(x-2)}{x+3} \times \frac{3(x+3)}{4(x-2)}$
$\frac{3(x+2)}{4}$
$\therefore x \neq-3,2$
Example: $\quad \frac{x^{2}-x y-20 y^{2}}{x^{2}-8 x y+15 y^{2}} \times \frac{x^{2}-x y-6 y^{2}}{x^{2}+2 x y-8 y^{2}}$
$\frac{x^{2}+4 x y-5 x y-20 y^{2}}{x^{2}-3 x y-5 x y-15 y^{2}} \times \frac{x^{2}-2 x y+3 x y-6 y^{2}}{x^{2}-2 x y+4 x y-8 y^{2}}$
$\frac{x(x+4 y)-5 y(x+4 y)}{x(x-3 y)-5 y(x-3 y)} \times \frac{x(x-2 y)+3 y(x-2 y)}{x(x-2 y)+4 y(x-2 y)}$
$\frac{(x-5 y)(x+4 y)}{(x-5 y)(x-3 y)} \times \frac{(x+3 y)(x-2 y)}{(x+4 y)(x-2 y)}$
$\frac{x-5 y}{x-5 y} \times \frac{x-2 y}{x-2 y}$
$\frac{1}{1} \times \frac{1}{1}$
1
$\therefore x \neq 5 y, 3 y,-4 y, 2 y, 0$

Adding and subtracting rational expressions

- Find the lowest common denominator, then add or subtract, and common factor if possible

Example: $\quad \frac{4 x}{x+1}+\frac{6 x}{x+1}$
$\frac{4 x+6 x}{x+1}$
$10 x$

Example: $\quad \frac{3 a-b}{9}-\frac{a-2 b}{3}-\frac{4 a-3 b}{6}, L C D=18$
$\frac{6 a-2 b-(6 a-12 b)-(12 a-9 b)}{18}$
$\frac{-12 a+19 b}{18}$
Example: $\quad \frac{2 y+3}{3-4 y}+\frac{5+2 y}{4 y-3}$
$\frac{2 y+3-(5+2 y)}{3-4 y}$
$\frac{2 y+3-5-2 y}{3-4 y}$
$\frac{2}{3-4 y}$

- Always common factor and then find the lowest common denominator

Example: $\quad \frac{3}{2 m^{2 n}}-\frac{1}{m^{2} n^{3}}+\frac{4}{5 m n}, L C D=10 m^{2} n^{3}$
$\frac{15 n^{2}-10+8 m n^{2}}{10 m^{2} n^{3}}$
Example: $\quad \frac{x}{2 x-4}-\frac{3}{3 x-6}+1, L C D=6(x-2)$
$\frac{x}{2(2 x-2)}-\frac{3}{3(x-2)}+\frac{1}{1}$
$\frac{3 x-6+6(x-2)}{6(x-2)}$
$\frac{3 x-6+6 x+2}{6(x-2)}$
$9 x-18$
$\overline{6(x-2)}$
$\frac{9(x-2)}{6(x-2)}=\frac{9}{6}=\frac{3}{2}$

Example: $\quad \frac{2 x}{x-2}+\frac{3 x}{x+2}, L C D=(x-2)(x+2)$

$$
\begin{aligned}
& \frac{2 x(x+2)+3 x(x-2)}{(x-2)(x+2)} \\
& \frac{2 x^{2}+4 x+3 x^{2}-6 x}{(x-2)(x+2)} \\
& \frac{5 x^{2}-2 x}{(x-2)(x+2)}
\end{aligned}
$$

Example: $\quad \frac{2 x-1}{2 x^{2}+3 x+1}+\frac{2 x+1}{3 x^{2}+4 x+1}, L C D=(2 x+1)(3 x+1)(x+1)$
$\frac{2 x-1}{(2 x+1)(x+1)}+\frac{2 x+1}{(3 x+1)(x+1)}$
$\frac{(2 x-1)(3 x+1)+(2 x+1)(2 x+1)}{(2 x+1)(3 x+1)(x+1)}$
$\frac{6 x^{2}-x-1+4 x^{2}+4 x+1}{(2 x+1)(3 x+1)(x+1)}$
$\frac{10 x^{2}+3 x}{(2 x+1)(3 x+1)(x+1)}$
Example: $\quad \frac{(x+3)(x+2)}{(x-2)(x-1)} \times \frac{x-1}{x+3}-\frac{6}{x+3}$
$\frac{x+2}{x-2}-\frac{6}{x+3}$
$\frac{x+2}{(x-2)(x+3)}-\frac{6}{(x-2)(x+3)}$
$x^{2}+5 x+6-6 x+12$
$(x-2)(x+3)$
$\frac{x^{2}-x+18}{(x-2)(x+3)}$
Example: $\quad \frac{3 x^{2}-5 x-2}{3 x^{2}+13 x+4} \div \frac{x^{2}-x-2}{x^{2}+3 x-4}$
$\frac{(3 x+1)(x-2)}{(3 x+1)(x+4)} \times \frac{x^{2}+3 x-4}{x^{2}-x-2}$
$\frac{(3 x+1)(x-2)}{(3 x+1)(x+4)} \times \frac{(x+4)(x-1)}{(x-2)(x+1)}$
$\frac{x-1}{x+1}$
$\therefore x \neq-\frac{1}{3},-4,2,-1,1$

Entire and mixed radicals

- Entire radicals are radicals that are irrational
- Mixed radicals are radicals that sum to an entire radical
- Simplify radicals by finding terms that sum to the entire radical
- The terms must be perfect squares

Example: $\quad \sqrt{40}$
$\sqrt{4} \cdot \sqrt{10}$
$2 \sqrt{10}$
Example: $\quad \sqrt{\frac{20}{9}}$
$\frac{\sqrt{20}}{\sqrt{9}}$
$\left(\frac{\sqrt{4} \sqrt{5}}{3}\right)$
$\frac{2 \sqrt{5}}{3}$

- Keep in mind like terms

$$
\begin{array}{ll}
\text { Example: } & \sqrt{5} \sqrt{10} \\
& \sqrt{50} \\
& \sqrt{2} \sqrt{25} \\
& 5 \sqrt{2} \\
& \\
\text { Example: } & 4 \sqrt{3} \cdot 2 \sqrt{7} \\
& 8 \sqrt{21} \\
& \text { Example: } \\
& 2 \sqrt{7} \cdot 3 \sqrt{2} \cdot \sqrt{7} \\
& 6 \sqrt{98} \\
& 6 \sqrt{49} \sqrt{2} \\
& 6 \cdot 7 \sqrt{2} \\
& 42 \sqrt{2} \\
\text { Example: } & \frac{25-\sqrt{125}}{10} \\
& \frac{25-5 \sqrt{5}}{10} \\
& \frac{5-\sqrt{5}}{2}
\end{array}
$$

- When you have a negative radical, the answer is indeterminable; however, mathematically expressed is the imaginary number. This is notated by i
- Ensure that complex numbers are being used

Example:	-80 $4 i \sqrt{5}$
	$\sqrt{-1}$ Example:
Example:	$(i \sqrt{3})^{2}$ -3

Operating Radicals

Simplifying radicals by use of factoring and finding like terms. Also known as complex numbers

- Adding and subtracting radicals can be done through gathering like terms
- In this case, like terms are terms that have a common root in the polynomial
- Keep roots the same

$$
\begin{array}{ll}
\text { Example: } & 4 \sqrt{3}+7 \sqrt{20}-5 \sqrt{12}+4 \sqrt{5} \\
& 4 \sqrt{3}+7(2) \sqrt{5}-5(2) \sqrt{3}+4 \sqrt{5} \\
& 4 \sqrt{3}+14 \sqrt{5}-10 \sqrt{3}+4 \sqrt{5} \\
& 18 \sqrt{5}-6 \sqrt{3}
\end{array}
$$

- When multiplying radicals, use distributive property and multiply the roots separately

Example: $\quad 7 \sqrt{5}(3 \sqrt{3}+4 \sqrt{2})$

$$
21 \sqrt{15}+28 \sqrt{10}
$$

- Always simplify when you can

Example: $\quad-2 \sqrt{3}(\sqrt{11}-\sqrt{6})$

$$
-2 \sqrt{33}+2 \sqrt{18}
$$

$$
-2 \sqrt{33}+2(3) \sqrt{2}
$$

$$
-2 \sqrt{33}+6 \sqrt{2}
$$

Example: $\quad(\sqrt{3}-2 \sqrt{2})(\sqrt{3}+2 \sqrt{2})$

$$
\sqrt{9}-4 \sqrt{4}
$$

3-8
-5

- You will have to rationalize the denominator in fractions because it is improper to have an irrational denominator
- Rationalizing means making a value rational
- To do so, multiply the irrational denominator to a fraction where both the numerator and denominator are equal. This is also known as conjugating

Formula: $\quad a \sqrt{b}+c \sqrt{d}$ and $a \sqrt{b}-c \sqrt{d}$
a, b, c, d
are always rational numbers. The product of conjugating is always rational

- Multiply accordingly and eliminate roots using conjugates

Example: $\quad \frac{1}{\sqrt{3}}$
$\frac{1}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}$
$\frac{\sqrt{3}}{3}$

Example: $\quad \frac{4}{3 \sqrt{2}}$
$\frac{4}{3 \sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}$
$\frac{4 \sqrt{2}}{3(2)}$
$\frac{4 \sqrt{2}}{6}$
$\frac{2 \sqrt{2}}{3}$

- When given 2 polynomials in the denominator, being irrational, invert the operator given and solve

$$
\text { Example: } \begin{aligned}
& \frac{-4}{6 \sqrt{2}+2 \sqrt{5}} \\
& \frac{-4}{6 \sqrt{2}+2 \sqrt{5}} \cdot \frac{6 \sqrt{2}-2 \sqrt{5}}{6 \sqrt{2}-2 \sqrt{5}} \\
& \frac{-24 \sqrt{2}+8 \sqrt{5}}{35(2)-4(5)} \\
& \frac{-24 \sqrt{2}+8 \sqrt{5}}{72-20} \\
& \frac{-24 \sqrt{2}+8 \sqrt{5}}{52} \\
& \frac{4(-6 \sqrt{2}+2 \sqrt{5})}{4(13)} \\
& \frac{-6 \sqrt{2}+2 \sqrt{5}}{13}
\end{aligned}
$$

- Solve for the variable by putting in standard form

Example: $\quad x=3 \pm \sqrt{2}$

$$
x-3= \pm \sqrt{2}
$$

$$
(x-3)^{2}=2
$$

$$
(x-3)^{2}-2=0
$$

$$
x^{2}-6 x+9-2=0
$$

$$
x^{2}-6 x+7=0
$$

- When working with roots larger than 2 , always simplify the root by finding perfect roots

$$
\begin{array}{ll}
\text { Example: } & \sqrt[3]{\sqrt{16}} \\
& \sqrt[3]{8} \sqrt[3]{2} \\
& 2 \sqrt[3]{2} \\
\text { Example: } & \sqrt[3]{16}+\sqrt[3]{54} \\
& \sqrt[3]{8} \sqrt[3]{2}+\sqrt[3]{27} \sqrt[3]{2} \\
& 2 \sqrt[3]{2}+3 \sqrt[3]{2} \\
& 5 \sqrt[3]{2}
\end{array}
$$

Statistics

Mean, Median and Mode, otherwise known as average, middle number and common value

Term	Definition and formula	Example
Mean (average)	Mean = sum of values/number of values Middle number (in order), if between 2	$2+4+6=12 \div 3=4$
Median	Mumbers, then adjust value accordingly node	Number that appears most often
Range	The difference between the greatest and smallest number in the series	$4,5,148,149,150=148.5$

- An outlier is a measurement that differs significantly from the rest of the data

Example: $1,2,4,8,16,32,(33), 128,256 \ldots$

Prime Numbers

Numbers that can only be divisible by 1 and themselves

- A prime number is a whole number with only 2 factors: itself and 1

Examples: $\quad 2,3,5,7,11,13,17 \ldots$
Example: $\quad 3=3 \times 1$

- A factor is a number or array of numbers that are between the highest and lowest number

Prime Numbers Chart (1-100)
Grey: Prime Number

$\mathbf{1}$	2	3	4	5	6	7	8	9	10
$\mathbf{1 1}$	12	13	14	15	16	17	18	19	20
$\mathbf{2 1}$	22	23	24	25	26	27	28	29	30
$\mathbf{3 1}$	32	33	34	35	36	37	38	39	40
$\mathbf{4 1}$	42	43	44	45	46	47	48	49	50
$\mathbf{5 1}$	52	53	54	55	56	57	58	59	60
$\mathbf{6 1}$	62	63	64	65	66	67	68	69	70
$\mathbf{7 1}$	72	73	74	75	76	77	78	79	80
$\mathbf{8 1}$	82	83	84	85	86	87	88	89	90
$\mathbf{9 1}$	92	93	94	95	96	97	98	99	100

Prime factoring

- When you are trying to find the lowest common multiple (LCM), you use prime factoring. By breaking down a number into the smallest prime digits

Example: $\quad 28=2 \times 14=2 \times 2 \times 7$

- Factor trees are how a number can be broken down into prime factors

Example:

$$
\begin{gathered}
512 \\
2 \times 256 \\
2 \times 2 \times 128 \\
2 \times 2 \times 2 \times 64 \\
2 \times 2 \times 2 \times 2 \times 32 \\
2 \times 2 \times 2 \times 2 \times 2 \times 16 \\
2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 8 \\
2 \times 4 \\
2 \times 2 \\
=2^{9}
\end{gathered}
$$

Example:

$$
\begin{gathered}
36 \\
12 \times 3 \\
4 \times 3 \times 3 \\
2 \times 2 \times 3 \times 3 \\
=2^{2} \times 3^{2}
\end{gathered}
$$

Composite numbers

- A composite number is a whole number with more than 2 factors; opposite rules of prime numbers

Examples: $\quad 4,6,8,9,10,12,14 \ldots$
Example: $\quad 6=3 \times 2$
$6=6 \times 1$
The number 1

- The number 1 is neither a prime or composite number

Rational Numbers

A rational number is a number that can be written as a quotient (division question) of 2 integers, where the divisor is not 0

- A real number is also referred to as a rational number

Examples: $\quad-\frac{3}{5} ; 0.25 ;-1 \frac{3}{4} ;-3$

- There are many equivalent rational numbers

Example: $\quad-1 \frac{1}{2}=-\frac{3}{2}=\frac{-3}{2}=\frac{3}{-2}=-1.5$

- Order of rational numbers (greatest to least or vice versa)

Example: $\quad-3,-2.55,-1 \frac{1}{2}, 0.5, \frac{5}{4}, 2.5$

Order of Operation

The easiest way to remember the order of operations is through using an acronym

BEDMAS: Brackets
Exponents
Division and Multiplication $\div \times$
Addition and Subtraction + -

- In a question, we solve using BEDMAS; left to right

Example: $\quad \frac{-3\left(4 \times 2^{2}\right)^{2}+5-(-2)}{2^{3}}=\frac{-3\left(4^{2} \times 2^{4}\right)+7}{8}=\frac{-3(16 \times 16)+7}{8}=\frac{-3(256)+7}{8}=\frac{-768+7}{8}=$ $-\frac{768}{8}=-96$

Counter Example

A counter example is when a question believes that the information is true by displaying it through an example where the condition is true. A counter example is an example that disproves the belief of the question and shows clearly a false condition

- A conjecture is a general conclusion derived from apparent facts. A conjecture may not be true
- An inference is a conclusion based on reasoning and data
- A counter example can disprove a conjecture or hypothesis

System International (S.I.)

The system international is how we measure things metrically

Quantity	Base Unit	Symbol
Length	Meter	m
Mass	Gram	g
Volume	Litre/Cubic Meter	$\mathrm{I} / \mathrm{m}^{3}$
Time	Second	s

- Units can be divided or multiplied into multiples of 10 to give larger or smaller subunits
- Prefixes are used to indicate smaller or larger subunits

Common units used with the International System

Units of Measurement	Abbreviation	
Metre	m	Relation
Hectare	ha	G
Tonne	t	Mass
Kilogram	kg	Mass
Nautical mile	M	Distance (navigation)
Knot	kn	Speed (navigation)
Liter	L	Volume or capacity
Second	s	Time
Hertz	Hz	Frequency
Candela	cd	Luminous intensity
Degree Celsius	${ }^{\circ} \mathrm{C}$	Temperature
Degree Fahrenheit	${ }^{\circ} \mathrm{F}$	Temperature
Kelvin	K	Thermodynamic temperature
Pascal	Pa	Pressure/stress
Joule	J	Energy/work
Newton	N	Force
Watt	W	Power/radiant flux
Ampere	A	Electric current
Volt	V	Electric potential
Ohm	Ω	Electrical resistance
Coulomb	C	Electric charge

Metric system

Kilometre	Hectometre	Decametre	Metre	Decimetre	Centimetre	Millimetre
$\mathbf{k m}$	hm	dam	m	dm	cm	mm
$\mathbf{1 0 0 0}$	100	10	1	$\frac{1}{10} ; 0.1$	$\frac{1}{100} ; 0.01$	$\frac{1}{1000} ; 0.001$
$\mathbf{1 0}^{\mathbf{3}}$	10^{2}	10^{1}	10^{0}	10^{-1}	10^{-2}	10^{-3}

English system

Units of Measurement	Abbreviation	Relation
1 inch	in./"	
1 foot	ft .	12 inches
1 yard	yd.	3 feet
1 mile	mi .	1760 yards
1 square foot	sq. ft.	144 sq. inches
1 square yard	sq. yd.	9 sq. feet
1 acre	acre	4840 square yards $43,560 \mathrm{ft}^{2}$
1 square mile	sq. mi.	640 acres
1 ton	T	2000 pounds
1 tablespoon		3 teaspoons
1 cup	c	16 tablespoons
1 pint	pt	2 cups
1 quart	qt	2 pints
1 gallon	gal	4 quarts
16 ounces	oz	1 pound
1 pound	lb	

Temperature conversion

Celsius to Fahrenheit	Fahrenheit to Celsius
${ }^{\circ} \mathrm{C} \rightarrow{ }^{\circ} \mathrm{F}: \mathrm{n} \times 1.8 ;+32$	${ }^{\circ} \mathrm{F} \rightarrow{ }^{\circ} \mathrm{C}:(\mathrm{n}-32) \times 0.555$

Length and area conversion

Initial Unit	Second Unit	$\left.\mathbf{(1}^{\text {st }} \boldsymbol{\rightarrow} \mathbf{2}^{\text {nd }}\right)$ Multiply	$\left.\mathbf{(2}^{\text {nd }} \boldsymbol{\rightarrow} \mathbf{1}^{\text {st }}\right)$ Multiply
Centimetre	Inch	0.3937	2.54
Metre	Foot	3.2808	0.3048
Kilometre	Mile	0.6214	1.609
Metre 2	Foot 2	10.76	0.0929
Kilometre 2	Mile 2	0.3861	2.59

Weight and volume conversation

Initial Unit	Second Unit	$\left(\mathbf{1}^{\text {st }} \boldsymbol{\rightarrow} \mathbf{2}^{\text {nd }}\right)$ Multiply	$\left.\mathbf{(2}^{\text {nd }} \boldsymbol{\rightarrow} \mathbf{1}^{\text {st }}\right)$ Multiply
Gram	Ounces	0.0353	28.35
Kilogram	Pound	2.2046	0.4536
Tonne	Ton	1.1023	0.9072
Millilitre	Ounces (fluid)	0.0338	29.575
Litre	Gallon	0.2642	3.785

Scientific Notation

Scientific notation is a method to express extremely large or small numbers

- Number of digits after the decimal determines the exponent
- Based on powers of 10

Example: $\quad 123000000000=$ number

$$
\begin{aligned}
1.23 \times 10^{11}= & \text { scientific notation } 1.23=\text { coefficient; } 10=\text { base; } 11 \\
& =\text { exponent }
\end{aligned}
$$

- The coefficient must be greater than or equal to 1 and less than 10
- The base must always be 10 ; a common notation for the base is the variable e

Example: $\quad 1.23 e^{11}$

- Decimal place moves between the first and second digit
- When working with small numbers the exponent becomes negative
- Number of digits before the coefficient determines the exponent (negatively)

Example: $\quad 0.000000795$
$795=$ coefficient7.93 $\times 10^{-7}$

- Negative exponent is referred to a fraction

Example: $\quad 10^{-7}=\frac{1}{10^{7}}$

Significant Digits

Digits that are significant when placed with multiple 0's. Significant digits are also known as significant figures, or Sig. Figs.

- All counted quantities are exact
- All measured quantities have some degree of error
- 0's placed before other digits are not significant

Example: $\quad 0.00(54)$ has 2 significant digits

- 0's placed between other digits are always significant

Example: $\quad 2.0036$ has 5 significant digits

- 0's placed after other digits are significant only if there is a decimal place

Example: $\quad 1000.00$ has 6 significant digits
1000 has 1 significant digit

- To change the number of a significant digits for a whole number (like 1000), convert it into scientific notation

Example: $\quad 1000$ has 1 significant digit, but if changed into scientific notation it becomes 1.000×10^{3} which gives this number 4 significant digits

- When multiplying and dividing significant digits, the result must have the same number of significant digits as the smallest measurement in the calculation

Example: $\quad 234.01 \times 2.50=585.025 \rightarrow 3$ significant digits $\therefore 585$

- When adding and subtracting significant digits, the result must have the same number of significant digits as the measurement with the least number of decimal points

Example: $\quad 2.1 \mathrm{~cm}+3.04 \mathrm{~cm}+1.02 \mathrm{~cm}=6.16 \mathrm{~cm} \rightarrow 2$ significant digits $\therefore 6.2 \mathrm{~cm}$

Rounding

Rounding numbers is the technique of shortening digit lengths to a easily understandable and realistic value.

- Place value is the classification of where a digit lies in a number
- Each classification is named after its base value, the beginning is the decimal point
- Digits that appear after the decimal point end with the suffix '-s' and start at one

Example: 1534
1: Thousands
5: Hundreds
3: Tens
4: Ones

- Digits that appear before the decimal point end with the suffix '-th' and start at ten

Example: 35.796
3: Tens
5: Ones
7: Tenth
9: Hundredth
6:Thousandth

- Rounding numbers is based on greatening the value of the higher digit place value
- Numbers between 0 and 4 are rounded down. Numbers between 5 and 9 are rounded up.

When rounded up or down, the place value next to it increases, remains neutral, or decreases
Example: \quad Number $=2564$; Round to the nearest hundreds
$\because 6$ (a tens place value) is >5 then
Number $=2600$

Example: \quad Number $=0.872$; Round to the nearest hundredth
$\because 2$ (a thousandth place value) is <5 then
Number $=0.870$

Algebra

Polynomials

A polynomial is a combination of constants and variables that are bound by multiplication and division. There are 4 classifications of polynomials. They are a monomial, binomial, trinomial and polynomial. Each indicates whether there is $1,2,3$ or more than 3 terms.

Type	Number of Terms	Examples
Monomial	1	$5 y, 3 a, 2 x, 50, x, x y, x y z$
Binomial	2	$5 y+3 a, 2 x+10,50 x+3 a, x+y, p^{2}+p$
Trinomial	3	$p^{3}+p^{2}+p, 2^{3}+2^{2}+2,2 y+4 k-7 z$
Polynomial	$3+$	$a^{2} b+5-4 a b+2$

- A Monomial is a number, a product of one or more variables, or the product of a number and or more variables. The coefficient is the number part of a monomial

Example: $\quad b x ; b=$ coefficient, $x=$ variable, $b x=$ monomial

- A polynomial is formed by adding or subtracting monomials. Each monomial is a term of the polynomial. Some polynomials have special names
- Monomial: $6 x,-3 x^{2}, 4 x 3 y 3$
- Binomial: $3 x+y, 2 x+7,6 x^{2}-2 x y$
- Trinomial: $x^{2}+x y+y, 6 x^{2}-3 b^{2} c^{2}+2 a b c d$
- Polynomials with more than 3 terms are called polynomials.
- Polynomials can also be classified by the degree of the variable
- The Degree is the highest number of the sum of the exponents

Example:	Polynomial		Term		Name
	$-6 x$	1		Degree	
	2	1		Monomial	1
	$6 x-7 y$	2		Monomial	0
	$5 x^{3}+x^{2}-7 x+2$	4	Binomial	1	
		Polynomial	3		

- How each are classified are through the number of terms used
- A term is classified by constants and variables that are not bound by addition or subtraction operators

Example: $\quad 2 a=1$ terms $=$ monomial
Example: $\quad 2 a+3 a=2$ terms $=$ binomial
Example: $\quad 2 a-a+4 b=3$ terms $=$ trinomial
Example: $\quad 2 a-a^{3}+5 / 4-a b=4$ terms $=$ polynomial

- A variable is a letter that represents a value

Examples: $\quad a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z$

- A coefficient is a number that is multiplied by a variable

Examples: $\quad 3 x \rightarrow 3, x \rightarrow 1$

- A constant is a term that doesn't include any variables (a number by itself)

Example: $\quad 3 x+50 \rightarrow 50$

- A degree of a term means the sum of the exponents on the variables in a term

Examples: $\quad x^{2} \rightarrow 2,3 y^{4} \rightarrow 4,(-2) a^{3} b \rightarrow 4,(-3) \rightarrow 0$

- A degree of a polynomial means the degree of the highest term

Example: $\quad x-2 \rightarrow 1$
Example: $\quad 3 w^{2}-2 w+5 \rightarrow 2$

When graphing with variables, there are 2 types of variables. Independent variables and dependant variables

- Independent variables are variables that are not affected by other variables (x axis)
- Dependant variables are variables that can be affected by other variables (y axis)
- A dependant variable is a variable affected by another variable. On a graph, the dependant variable is labelled on the y axis
- An independent variable is a variable that affects other variables. On a graph, the independent variable is labelled on the x axis

Collecting Like Terms

Like terms is a way of simplifying a question by taking terms with similar variables

- In order to collect like terms, the terms that are being collected must have the same variable/letter and the same exponent
- Add or subtract terms from each other
- Rewrite in greatest to least term and in alphabetical order

Example: $\quad 3 x+5 x=8 x$
Example: $\quad 2 x+3+3 x+6=2 x+3 x+3+6=5 x+9$
Example: $\quad 2 x+7 x+3 x+4 z+5+2 z+3 x+1=3 x+3 x+2 x+4 z+2 z+7+5+$ $1=8 x+6 z+13$

Example: $\quad 3 x+2 y+6 x-y+3=6 x+3 x+2 y-y+3=9 x+1 y+3=9 x+y+3$

- When there are variables with different exponents, only group same exponent variables together, not all variables

Example: $\quad 5 x^{2}-3+2 x-2 x^{2}+x-6=5 x^{2}-2 x^{2}+2 x+x-6-3=3 x^{2}+3 x-9$

Add polynomials

- Remove brackets and collect like terms

Example: $\quad(k+3)+(3 k-4)=k+3+3 k-4=3 k+k+3-4=4 k-1$
Example: $\quad\left(6 x^{2}+3 x-5\right)+\left(7 x^{2}-3 x-10\right)=6 x^{2}+3 x-5+7 x^{2}-3 x-10=$ $7 x^{2}+6 x^{2}+3 x-3 x-5-10=13 x^{2}-15$

Example: $\quad(p+3)+(-2 p+1)=p+3+(-2 p)+1=p+(-2 p)+3+1=(-p)+4$

Subtract polynomials

- Add opposite, open brackets then collect like terms
- Switch opposite for every minus sign before a bracket
- When there is a negative sign outside a bracket, think of it as negative 1 and use distributive property to get the opposite

Example:

$$
(3 t+5)-(-7 t+1)=(3 t+5)+(7 t-1)=3 t+5+7 t-1=3 t+7 t+
$$ $5-1=10 t+4$

Example: $\quad\left(2 k^{2}-6 k+8\right)-\left(5 k^{2}-6 k+8\right)=\left(2 k^{2}-6 k+8\right)+\left(-5 k^{2}+6 k-8\right)=$ $2 k^{2}-6 k+8-5 k^{2}+6 k-8=2 k^{2}-5 k^{2}-6 k+6 k+8-8=\left(-3 k^{2}\right)$

Multiply polynomials

- Multiplying monomials
- Remove brackets
- Multiply coefficients
- When multiplying variables, collect like terms of the similar variable and per variable, add an additional exponent
- collect like terms

Example: $\quad\left(9 x^{2}\right)(3 x)=27 x^{3}$
Example: $\quad(-8 x y)\left(6 x^{2} y^{4} z\right)=-48 x^{3} y^{5} z$

- Multiplying Binomials
- Similar to multiplying monomials but there is a specific order

Formula: \quad FOIL: First term, outside term, inside term, last term
Example: $\quad(x+3)(x-7)$

$$
x \times x
$$

$x \times-7$
$3 \times x$
3×-7
$=x^{2}-7 x+3 x-21$
$=x^{2}-4 x-21$
Example: $\quad(6 y-3)(2 x+7)$
$=12 x y+42 y-6 x-21$
$=12 x y-6 x+42 y-21$
Example: $\quad 6(3 x-4)(x-7)$
$=6\left(3 x^{2}-21 x-4 x+28\right)$
$=6\left(3 x^{2}-25 x+28\right)$
$=6\left(3 x^{2}\right)+6(-25 x)+6(28)$
$=18 x^{2}-150 x+168$
Simplify: $\quad 8-3(4 x-3)(5 x-2)-(3 x+5)(2 x+5)$
$=8-3\left(20 x^{2}-8 x-15 x+6\right)-\left(6 x^{2}+15 x+10 x+25\right)$
$=8-3\left(20 x^{2}-23 x+6\right)-\left(6 x^{2}+25 x+25\right)$
$=8-3\left(20 x^{2}\right)-3(-23 x)-3(6)-\left(6 x^{2}+25 x+25\right)$
$=8-60 x^{2}+69 x-18-6 x^{2}-25 x-25$
$=-66 x^{2}+44 x-35$

Squaring Binomials

- Multiply the bracket term by how ever many exponents there are

$$
\begin{array}{ll}
\text { Example: } \quad & (x-2)^{2} \\
& =(x-2)(x-2) \\
& =x^{2}-2 x-2 x+4 \\
& =x^{2}-4 x+4
\end{array}
$$

Example: $\quad(x-2 y)^{2}$

$$
=(x-2 y)(x-2 y)
$$

$$
=x^{2}-2 x y-2 x y+4 y^{2}
$$

$$
=x^{2}-4 x y+4 y^{2}
$$

Example: $\quad(6 x-4 y)^{2}$
$=(6 x-4 y)(6 x-4 y)$
$=36 x^{2}-24 x y-24 x y+16 y^{2}$
$=36 x^{2}-48 x y+16 y^{2}$
Example: $\quad(3 x+2 y)^{2}$
$=(3 x+2 y)(3 x+2 y)$
$=9 x^{2}+6 x y+6 x y+4 y^{2}$
$=9 x^{2}+12 x y+4 y^{2}$

- The product of sum difference can be solved 2 ways
- Simplify

$$
\text { Example: } \quad \begin{array}{ll}
& (x-y)(x+y) \\
& =x^{2}+x y-x y-y^{2} \\
& =x^{2}-y^{2}
\end{array}
$$

Example: $\quad(3 x+4 y)(3 x-4 y)$

$$
=9 x^{2}-12 x y+12 x y-16
$$

$$
=9 x^{2}-16 y^{2}
$$

- Watch for the operators

Formula: $\quad(a+b)(a-b)=a^{2}-b^{2}$
Formula: $\quad(a+b)^{2}=a^{2}+2 a b+b^{2}$
Formula: $\quad(a-b)^{2}=a^{2}-2 a b+b^{2}$

- Simplify

Example: $\quad(5 x+2 y)(5 x-2 y)$

$$
=(5 x)^{2}-(2 y)^{2}
$$

$$
=25 x^{2}-4 y^{2}
$$

Example: $\quad 16 y^{2}-25 x^{2}$

$$
=(4 y-5 x)(4 y+5 x)
$$

- Look for common factors first

$$
\begin{aligned}
& \text { Example: } \quad 18 x^{2}-8 y^{2} \\
& =2\left(9 x^{2}-4 y^{2}\right) \\
& =2(3 x-2 y)(3 x+2 y) \\
& \text { Example: } \quad \frac{x^{2}}{4}-\frac{1}{9} \\
& =\left(\frac{x}{2}-\frac{1}{3}\right)\left(\frac{x}{2}-\frac{1}{3}\right) \\
& \text { Example: } \quad 3(2 x+3)^{2}-(2 x-4)(2 x+4) \\
& =3(2 x+3)(2 x+3)-\left(4 x^{2}-16\right) \\
& =3\left(4 x^{2}+12 x+9\right)-4 x^{2}+16 \\
& =12 x^{2}+36 x+27-4 x^{2}+16 \\
& =8 x^{2}+36 x+43
\end{aligned}
$$

Perfect square trinomials

- First and last terms are perfect squares
- Middle term is twice the product of the square roots of the first and last terms

Formula: $\quad a^{2}+2 a b+b^{2}=(a+b)^{2}$
Formula: $\quad a^{2}-2 a b+b^{2}=(a-b)^{2}$

- Perfect squares can be determined through a second method

Example: $\quad 4 x^{2}+12 x+9$
$\therefore 2(\sqrt{4} \sqrt{9})=12$

- Simplify

Example: $\quad x^{2}+6 x+9$
$=(x+3)^{2}$
Example: $\quad x^{2}-10 x+25$
$=(x-5)^{2}$
Example: $\quad 9 x^{2}+12 x y+4 y^{2}$
$=(3 x+2 y)^{2}$
Example: $\quad x^{3}-18 x^{2}+91 x$
$=x\left(x^{2}-18 x+81\right)$
$=x(x-9)^{2}$
Example: $\quad 32 x^{2}-8$
$8\left(4 x^{2}-1\right)$
$8(2 x+1)(2 x-1)$
Example: $\quad 9 x^{2}-6 x+1$
$(9 x-1)^{2}$
Example: $\quad x^{2}-36$
$(x+6)(x-6)$

Example: The area of a square is represented by $A=9 a^{2}-24 a+16$, for a being a positive number. Find a $A=(3 a-4)^{2}$
$A=(3 a-4)(3 a-3)$
$3 a-4>0$
$3 a>4$
$a=\frac{4}{3}$

- Perfect squares can also be found in other polynomials
- Watch for exponents and perfect squares

Example: $\quad x^{4}-81$
$=\left(x^{2}+9\right)\left(x^{2}-9\right)$
$=\left(x^{2}+9\right)(x-3)(x+3)$

- The variable may have more than 1 answer

Example: $\quad 2 x^{2}+7 x=-3$

$$
2 x^{2}+7 x+3=0
$$

$2 x^{2}+x+6 x+3=0$
$x(2 x+1)+3(2 x+1)=0$
$(x+3)(2 x+1)=0$
$\therefore x=-3, x=-\frac{1}{2}$

- Simplify

Example: $\quad x^{2}-4 x=-4$
$x^{2}-4 x+4=0$
$(x-2)^{2}=0$
$x-2=0$
$x=2$
Example: $\quad x^{2}+49$
Can't be factored

Divide polynomials

- Remove brackets
- Divide coefficients
- When dividing variables, collect like terms of the similar variable and per variable, subtract an additional exponent
- collect like terms

Example: $\quad \frac{36 x^{5} y^{4} z^{3}}{2 x^{3} y^{-7} z^{2}}=18 x^{2} y^{11} z$

- Expand and simplify; 2 methods
- Second method involves dividing the 2 simplified terms

$$
\begin{array}{ll}
\text { Example: } & -6 x(x-3)+5 x(x-7) \\
& =-6 x^{2}+18 x+5 x^{2}-35 x=-x^{2}-17 \\
& \text { Second Method } \\
& =\frac{-6 x^{2}+18 x}{5 x^{2}-35 x}=-x^{2}-17 x
\end{array}
$$

Difference of Squares

- A simple way of common factoring
- Only applies to a difference

Formula: $\quad\left(x^{2}-b\right)$ Where b is a perfect square
$(x+\sqrt{b})(x-\sqrt{b})$
Example: $\quad\left(x^{2}-25\right)$
$(x+5)(x-5)$

Distributive Property

When you have a constant or variable outside a bracket, you distribute the constant or variable to every term within the bracket and multiply each term by that variable or constant. Also known as expanding or simplifying

$$
\begin{array}{ll}
\text { Formula: } & a(x+y)=a x+a y \\
\text { Example: } & 7(x-3)=(7 x)+(7(-3)) \\
& =7 x-21
\end{array}
$$

Example: $\quad 6(p+q)+2 x(p+q)$

$$
=(p+q)(6+2 x)
$$

- When there is a term with a variable outside and inside the bracket, the variable is raised to the power of that variable or the sum of the exponents

Example: $\quad(7 y-1)(5 y)=5 y(7 y-1)=5 y(7 y)+5 y(-1)=35 y^{2}-5 y$
Example: $\quad 8 x^{2}+y+4 x y+x$
$=8 x^{2}+x+4 x y+y$
$=x(8 x+1)+y(4 x+1)$

- Dealing with fractions is no different, it applies as a term

Example:

$$
\frac{1}{2}(2 w-6)=\frac{1}{2}(2 w)+\frac{1}{2}(-6)=w-3
$$

- With variables, remember with like variables multiplied with each other makes it raised to the power of the sum of the exponents

Example: $\quad x(x+4)+2 x(x+1)=x(x)+x(4)+2 x(x)+2 x(1)=x^{2}+4 x+2 x^{2}+$ $3 x=2 x^{2}+x^{2}+4 x+2 x=3 x^{2}+6 x$

Factoring

Factoring is the opposite of expanding. Factoring is used to confirm what the Greatest Common Factor (GCF) is. We can easily assume what the GCF is but then we must confirm it. To find the GCF, find a term or constant or variable or both that fits all the terms

- In a polynomial with variables and constants, we identify the GCF, and then put the polynomial inside brackets and the GCF before the brackets. We divide each term in the brackets by the GCF

Example: $\quad 3 x+6 \mathrm{GCF}=3,3(x+2)$

- With exponents

Example: $\quad 2 x+8 x^{2}$ GCF $=2 x, 2 x(1+4 x)$
Example: $\quad 3 x^{2}+2 x+x y$ GCF $=x, x(3 x+2+y)$
Example: $\quad 5 m^{2} t-10 m^{2}-t^{2}-2 t$
$=5 m^{2}(t-2)+t(t-2)$
$=(t-2)\left(5 m^{2}+t\right)$

- With variables only

Example:

$$
b^{5} u^{2} m-b^{3} u m^{2} \mathrm{GCF}=b^{3} u m, b^{3} u m\left(b^{2} u-m\right)
$$

- Simply try to find what fits all terms
- Find the area in factored form

Example:

$$
\begin{aligned}
& A=(x+2+2)(y+2+2)-x y \\
& =(x+4)(y+4)-x y \\
& =x y+4 x+4 y+16-x y \\
& =4 x+4 y+16 \\
& =4(x+y+4)
\end{aligned}
$$

Factor by grouping

- Some polynomials do not have common factors in all of their terms. These polynomials can sometimes be factored by grouping terms that do not have a common factor
- Group terms that have a common factor

$$
\text { Example: } \quad \begin{array}{ll}
& a x+a y+b x+b y \\
& =a(x+y)+b(x+y) \\
& =(x+y)(a+b)
\end{array}
$$

- Factoring a trinomial

Formula: $\quad x^{2}+b x+c$

- $\quad b$ and c and constants
- To find the grouped factor, you must find 2 integers which will equal the sum of b and the product of c

Example: $\quad x^{2}+8 x+15$
What 2 numbers add to 8 and multiply to $15 ;(3,5)$
$3+5=8$
$3 \times 5=15$
$\therefore(x+3)(x+5)$

- Watch for the constants

$$
\begin{aligned}
\text { Example: } & \\
& x^{2}-x-30 ;(-6,5) \\
& =(x-6)(x+5)
\end{aligned}
$$

- Watch for the exponents

$$
\begin{aligned}
\text { Example: } & x^{3}+18 x^{2}+72 x ;(12,6) \\
& =x\left(x^{2}+18 x+72\right) \\
& =x(x+12)(x+6)
\end{aligned}
$$

- Remember that the rule applies to the whole term

$$
\begin{aligned}
\text { Example: } & (x-y)^{2}-5(x-y)+6 ;(-3,-2) \\
& =(x-y-3)(x-y-2)
\end{aligned}
$$

- When there are multiple variables, find the 2 integers and include the alternate variable term beside the constants

$$
\begin{aligned}
\text { Example: } & x^{2}+14 x y-32 y^{2} ;(16,-2) \\
& =(x+16 y)(x-2 y)
\end{aligned}
$$

- In some cases the polynomial will not be able to factor

Example: $\quad x^{2}-5 x-2$
Can't be factored

- When x has a constant multiple, it is considered a quadratic equation
- A quadratic equation is a polynomial equation of the second degree

Formula: $\quad a x^{2}+b x+c, a \neq 1$

- To find the grouped factor, you must find 2 integers which will equal the sum of b and the product of a and c

$$
\begin{array}{ll}
\text { Example: } & 2 x^{2}-x-6 ; \text { add: }-1 \text {, multiply: }-12 ;(-4,3) \\
& =2 x^{2}-4 x+3 x-6 \\
& =2 x(x-2)+3(x-2) \\
& =(x-2)(2 x+3) \\
& \text { Check: } \\
& (x-2)(2 x+3) \\
& =2 x^{2}+3 x-4 x-6 \\
& =2 x^{2}-x-6
\end{array}
$$

- Watch for the exponents

Example: $\quad 6 x^{2}+x y-2 y^{2}$; add: 1, multiply: $-12 ;(-3,4)$
$=6 x^{2}-3 x y+4 x y-2 y^{2}$
$=3 x(2 x-y)+2 y(2 x-y)$
$=(2 x+2 y)(2 x-y)$

- Look for common factors
- Common factors with constants

$$
\text { Example: } \quad \begin{aligned}
& 4 x^{2}+4 x y-8 y^{2} ; \text { add: } 4, \text { multiply: }-32 ;(8,-4) \\
& =4 x^{2}-4 x y+8 x y-8 y^{2} \\
& =4 x(x-y)+8 y(x-y) \\
& =(4 x+8 y)(x-y) \\
& =4(x+2 y)(x-y) \\
& \text { Common factors } \\
& =4\left(x^{2}+x y-2 y^{2}\right) ; \text { add: } 1, \text { multiply: }-2 ;(2,-1) \\
& =4(x+2 y)(x-y)
\end{aligned}
$$

- Common factors with variables

Example: $\quad 2 m^{2}+7 m^{2}-30 m$; add: 7 , multiply: $-60 ;(12,-5)$
$=m(2 m+7 m-30)$
$=m\left(2 m^{2}+12 m-5 m-30\right)$
$=m(2 m-5)(m+6)$

- Rearranging the question will sometimes make it easier to solve and then finding common factors

$$
\begin{array}{ll}
\text { Example: } & 15 n^{2}-n-2 ;(-6,5) \\
& =15 n^{2}-6 n+5 n-2 \\
& =15 n^{2}+5 n-6 n-2 \\
& =5 n(3 n+1)-2(3 n+1) \\
& =(5 n-2)(3 n+1)
\end{array}
$$

- In some cases the polynomial will not be able to factor

Example: $\quad 5 x^{2}+9 x+2$; add: 9 , multiply: 10
can't be factored

- There are scenarios in which there are multiple numbers which add and multiply to a term

Example: \quad For what value of k can this trinomial be factored?
$3 x^{2}+k x+5 ;$ add: k, multiply: 15 ;
$(3,5)=8,(-3,-5)=-8,(-15,-1)=-16,(15,1)=16$
$=k \in\{-16,-8,8,16\}$

Solving one step Equations

Adding and subtracting

- Isolate your variable
- Whatever is done to one side must be done to the other side

$$
\begin{array}{ll}
\text { Example: } & x+3=5 \\
& x+3-3=5-3 \\
& x=2 \\
& \text { Example: } \\
& x-3=-2 \\
& 2-3+3=-2+3 \\
& x=1
\end{array}
$$

Multiplying and dividing

- Isolate your variable
- Whatever is done to one side must be done to the other side

Example: $\quad 4 x=20$
$\frac{4 x}{4}=\frac{20}{4}$
$x=5$

- Always keep your variable positive

$$
\begin{array}{ll}
\text { Example: } & -k=11 \\
& -1 k=11 \\
& -1 k=\frac{11}{-1} \\
& k=-11
\end{array}
$$

Solving two step Equations

Recall the order of operations (BEDMAS), solve equations in reverse order of BEDMAS; SAMBED

- Isolate your variable or term
- Whatever is done to one side must be done to the other side

$$
\begin{array}{ll}
\text { Example: } & 3 x+12=15 \\
& 3 x+12-12=15-12 \\
& 3 x=3 \\
& \frac{3 x}{3}=\frac{3}{3} \\
& x=1 \\
& -2 x-6=8 \\
\text { Example: } & -2 x=8+6 \\
& x=\frac{14}{-2} \\
& x=-7
\end{array}
$$

Solving multi step Equations

Solve

- Isolate your variable
- Whatever is done to one side must be done to the other side
- Get all variable terms and constant terms to separate side
- Use reverse order of order of operations

$$
\begin{array}{ll}
\text { Example: } & 7 y=2(y+15) \\
& 7 y=2 y+30 \\
& 7 y-2 y=30 \\
5 y=30 \\
& y=\frac{30}{5} \\
& y=6
\end{array}
$$

- When trying to check work, simply substitute your answer into the question and solve separately for both sides. If the results of both sides are equivalent, then your answer is correct

Example: (refer to above example)

$$
\begin{aligned}
& 7 y=2(y+15) \\
& 7(6)=2(6+15) \\
& 42=2(21) \\
& 42=42 \\
& \therefore y=6
\end{aligned}
$$

Solving Equations with Fractions

- With one fraction, multiply the denominator to each term and/or bracket expression
- Do not distribute the fraction, you want to negate the fraction
- Always have the variable on the left side

$$
\begin{array}{ll}
\text { Example: } & 6=\frac{1}{3}(8+x) \\
& 3(6)=3\left[\frac{1}{3}(8+x)\right] \\
& 18=8+x \\
& 18-8=x \\
& x=10
\end{array}
$$

- With multiple fractions, find the lowest common denominator LCD and multiply the LCD to each term and/or bracket expression
- Once you have done so, divide the denominator in the fraction by the LCD. Eliminate the fraction and multiply the quotient LCD by the term and/or bracket expression
- Then use distributive property once no fraction remains

Example: $\quad \frac{k+2}{3}=\frac{k-4}{5}$

$$
\begin{aligned}
& 15\left(\frac{k+2}{3}\right)=15\left(\frac{k-4}{5}\right) \\
& 5(k+2)=3(k-4) \\
& 5 k-3 k=-12-10 \\
& 2 k=-22 \\
& k=-\frac{22}{2} \\
& k=-11
\end{aligned}
$$

- If a fraction is a numerator less than 1 , then, with the LCD, you divide the LCD with the denominator and multiply the quotient with the numerator

Example: $\quad \frac{3}{4}=4\left(\frac{3}{4}\right)=1(3)=3$

Rearranging Formulas

Single step

- Isolate the variable you want or term with variable
- Keep the isolated variable on the left side

$$
\text { Example: } \quad \begin{array}{ll}
d=a+b \\
& d-b=a+b-b \\
& d+b=a \\
& a=d-b
\end{array}
$$

$$
\text { Example: } \quad c=2 \pi^{[r}
$$

$$
\frac{c}{2 \pi}=\frac{2 \pi^{r}}{2 \pi}
$$

$$
\frac{c}{2 \pi}=r
$$

$$
r=\frac{c}{2 \pi}
$$

$$
\text { Example: } \quad A=S^{2}
$$

$$
\sqrt{A}=\sqrt{s^{2}}
$$

$$
\sqrt{A}=s
$$

$$
s=\sqrt{A}
$$

Multi step

- Isolate the variable you want
- Keep the isolated variable on the left side
- Use reverse order of order of operations

$$
\begin{array}{ll}
\text { Example: } & y=m \boxed{x}+b \\
& y-b=m x \\
& \frac{y-b}{m}=x \\
& x=\frac{y-b}{m}
\end{array}
$$

Word Problems

Let and therefore statements

- Let statements defines a variable
- Therefore statement justifies the answer

Example: \quad A number plus 3 is 8 . What is the number?

$$
\text { Let } x \text { represent the number }
$$

$x+3=8$
$x+3-3=8-3$
$x=5$
$\therefore x=5$ Or therefore the number is 5

- Be careful of the wording

Example: A number 3 less is 8 . What is the number? Let x represent the number
$x-3=8$
$x-3+3=8+3$
$x=11$
$\therefore x=11$

Consecutive numbers

- Consecutive numbers are integers that come one after the other without skipping.

Example: $\quad 1,2,3$ or $-1,0,1$ or $43,44,45$

- Use extended let statements to define the variable along with other numbers by using the variable in the statement
- Collect like terms
- Use If and Then statements to justify your answer and variables
- End with a therefore statement

Example: The sum of 3 consecutive numbers is 33
Let x represent the first number, then $x+1$ represent the second number and $x+2$ represent the third number
$x+(x+1)+(x+2)=33$
$x+x+1+x+2=33$
$3 x+3=33$
$3 x+3-3=33-3$
$\frac{3 x}{3}=\frac{30}{3}$
$x=10$
If $x=10$ Then,
$x+1=10+1=11$
And $x+2=10+2=12$
\therefore The 3 consecutive numbers are $10,11,12$

- Consecutive EVEN or ODD numbers are integers that come evenly or odd in series

Example: $\quad 2,4,6$ or $-3,-1,1$ or $43,45,47$

- Same rules apply but in this case, be sure to adjust the statements and variables accordingly

Example: The sum of 3 consecutive even numbers is 18
Let x represent the first number, then $x+2$ represent the second number and
$x+4$ represent the third number
$x+x+2+x+4=18$
$3 x+6-6=18-6$
$\frac{3 x}{3}=\frac{12}{3}$
$x=4$
If $x=4$ Then,
$x+2=4+2=6$
And $x+4=4+4=8$
\therefore The 3 consecutive numbers are $4,6,8$

- When word problems come in more complex orders, work backwards

Example: The length of a rectangle is 2 more than twice the width. If the perimeter is 40 m , what are the dimensions?
Let w represent the width, then $2 w+2$ represent the length
$p=2(l w)$
$40=2(2 w+2+w)$
$40=2(3 w+2)$
$40=2(3 w)+2(2)$
$40=6 w+4$
$40-4=6 w+6-6$
$\frac{36}{6}=\frac{6 w}{6}$
$w=6$
If $w=6$ Then,
$2 w+2=2(6)+2=14$
\therefore The dimensions are 6 m x 14 m

Example: Pablo is 7 years older than Mario. The sum of their ages is 13 . What are their ages?
Let m represent Mario's age, then $m+7$ represent Pablo's age
$m+m+7=13$
$2 m+7=13$
$2 m+7-7=13-7$
$\frac{2 m}{2}=\frac{6}{2}$
$m=3$
If $m=3$ Then,
$m+7=3+7=10$
\therefore Pablo's age is 10 and Mario's age is 3

Series and Sequences

A sequence is a set of numbers in order

- Sequences can be finite (terminate), or infinite (never ending) separated by commas

Example: 5, 6, 7, $8 \ldots$ (Infinite)
4, 7, 10 ,13 (Finite)
2, 4, 5, 8, 10 ... (Infinite)

- Each number in a sequence is called a term
- Each term can be denoted by t_{n} or $f(n)$ where n is the number position in the sequence
- The sequence can be defined by a formula

Example: $\quad t_{1}$ is the first term
t_{2} is the second term
t_{n} is the nth or general term

- When given a formula, you can solve the terms

Example: $\quad t_{n}=2 n+1$
3,5, 7, 9, 11

- When given a sequence, it is possible to find the formula

Example: $\quad 1,8,27,64,125$

$$
t_{n}=n^{3}
$$

- A series is the sum of a sequence

Arithmetic sequences and series

- Difference between consecutive terms is a constant
- This is called a arithmetic sequence
- First term t_{1} is denoted by a
- Each term after the first is found by adding a constant
- This is called the common difference denoted by d of the preceding term

Formula: $\quad t_{n}=a+(n-1) d$
Example: $\quad\{8,12,16\}$
$\therefore a=8, d=4$
$t_{n}=a+(n-1) d$
$t_{19}=a+(19-1) d$
$t_{19}=8+18 d$
$t_{19}=8+18(4)$
$t_{19}=8+72$
$t_{19}=80$
or
$t_{n}=4 n+4$
$t_{19}=4(19)+4$
$t_{19}=76+4$
$t_{19}=80$

- Applications for arithmetic sequence

Example: Find interest earned on $\$ 300$ over 10 years. The 15 th year was $\$ 325$
$t_{10}=a+(10-1) d$
$300=a+9 d$
$t_{15}=a+(15-1) d$
$325=a+14 d$
$a=325-14 d$
$300=325-14 d+9 d$
$d=5$
$a=255-5$
$\frac{250}{5}(100)=2 \%$

- The sum of the terms in an arithmetic sequence is an arithmetic series

Formula: $\quad s_{n}=\frac{n}{2}\left(a+t_{n}\right)$

- Plug in the values to find the sum of the sequence

Example: Find first 5 terms

$$
\begin{aligned}
& \{2,5,8,11,14\} \\
& s_{5}=\frac{5}{2}(2+14) \\
& s_{5}=40
\end{aligned}
$$

Geometric sequences and series

- When you multiply the preceding term by an integer
- The ratio of consecutive terms is called the common ratio
- In geometric sequences the first term is t_{1} denoted by a
- Each term after the first is found by multiplying the previous term by the common ratio r

Example: $\quad\{5,-10,20,-40,80\}$

$$
\begin{aligned}
& t_{n}=5(-2)^{n-1} \\
& t_{5}=5(-2)^{5-1} \\
& t_{5}=5(-2)^{4} \\
& t_{5}=5(16) \\
& t_{5}=80
\end{aligned}
$$

- General geometric sequence is $a, a r, a r^{2}, a r^{3} \ldots$
- a is the first term, r is the common ratio

Formula: $\quad t_{n}=a r^{n-1}, n=$ natural, $r \neq 0$

$$
\frac{t_{2}}{t_{1}}=\frac{a r}{a}=r
$$

$\therefore r=$ ratio of any successive pair of terms

- Finding the number of terms

Example: $\quad\{3,6,12 \ldots 384\}$

$$
t_{n}=a r^{n-1}
$$

$$
\frac{384}{3}=\frac{3(2)^{n-1}}{3}
$$

$$
128=2^{n-1}
$$

$$
2^{7}=2^{n-1}
$$

$$
7=n-1
$$

$$
8=n
$$

- Finding t_{n} given 2 terms

Example: $\quad t_{5}=1875, t_{7}=46875$

$$
\frac{46875}{1875}=\frac{a r^{6}}{a r^{4}} \rightarrow r= \pm 5
$$

- Applications for geometric sequence

Example: Half-life of lodine is 8 days. Average dose is 12 mg . What is the does after 112
days?

$$
a=12 \mathrm{mg}
$$

$$
r=\frac{1}{2}
$$

$$
n=15 \because \frac{112}{8}=14(+1) \because t_{0}=0
$$

$$
\therefore t_{15}=12\left(\frac{1}{2}\right)^{15-1}
$$

$$
t_{15}=7.3 e^{-4} \mathrm{mg}
$$

$$
\therefore \text { genreal term }=t_{n}=12\left(\frac{1}{2}\right)^{n-1}
$$

- The sum of the terms in an geometric sequence is an geometric series

Formula: $\quad s_{n}=\frac{a\left(r^{n}-1\right)}{r-1}$

Recursion Formula

- Formulas used to calculate a term based on previous terms
- Geometric and arithmetic sequences are explicit, meaning they do not use previous terms
- When given 2 terms and the formula, it is possible to find another term

Example: \quad Solve for t_{4}
$t_{1}=-1$
$t_{2}=1$
$t_{n}=2 t_{n-2}+4 t_{n-1}$
$t_{4}=2 t_{4-2}+4 t_{4-1} \rightarrow$ Can't solve because term 3 is not given: $2 t_{2}+4 t_{[3}$
$\therefore t_{3}=2 t_{3-2}+4 t_{3-1}$
$t_{3}=2$
$t_{4}=2 t_{4-2}+4 t_{4-1}$
$t_{4}=2(1)+4(2)$
$t_{4}=10$

- When given the sequence, find next term

Example: $\quad\{1,2,4,7,11,16\}$
$t_{1}=1$
$t_{2}=1+t_{1}$
$t_{3}=2+t_{2} \ldots$
$\therefore t_{n}=(n-1)+t_{n-1}$
$t_{5}=4+t_{4}$
$t_{5}=4+7$
$t_{5}=11$

- When given the sequence, get the formula

$$
\begin{array}{ll}
\text { Example: } & \{4,5,20,100,2000\} \\
& t_{1}=4 \\
& t_{2}=5 \\
& t_{3}=t_{1}\left(t_{2}\right) \\
& t_{4}=t_{2}\left(t_{3}\right) \\
& t_{5}=t_{3}\left(t_{4}\right) \\
& \therefore t_{n}=\left(t_{n-2}\right)\left(t_{n-1}\right)
\end{array}
$$

Pascal's Triangle

Pascal's triangle is an array. Pascal's triangle is useful for probability calculations.

- Based on the sum of 2 terms immediately above when visually laid out

Example:

$$
\begin{gathered}
1 \\
11 \\
121 \\
1331 \\
14641 \\
15101051 \\
1615201561
\end{gathered}
$$

- If $t_{n, r}$ represents the term in row n, position r

Formula: $\quad t_{n, r}=t_{n-1, r-1}+t_{n-1, r}$

$$
\begin{gathered}
t_{0,0} \\
t_{1,0} t_{1,1} \\
t_{2,0} t_{2,1} t_{2,2}
\end{gathered}
$$

Example: Given the first 6 terms in row 25 of Pascal's triangle. Find the first 6 terms in row 26
$\{1,25,300,2300,12650,5130\}$
$r=25: 1,25,300,2300,12650,5130 \ldots$
$\therefore r=26: 1,26,325,2600,14950,65780 \ldots$

Binomial Theorem

Recall that a binomial is a polynomial with 2 terms

- General formula for a binomial

Formula: $\quad a+b$

- Expanding $(a+b)^{n}$ can be solved through binomial expansion
- Using Pascal's triangle use n as the row number and multiply the coefficients through the formula

$$
\left.\begin{array}{ll}
\text { Example: } & \text { Let } a=2 x \\
& \text { Let } b=-1 \\
(2 x-1)^{4}
\end{array}\right] \quad \begin{aligned}
& \text { Coefficients }=1,4,6,4,1 \\
& \therefore(2 x-1)^{4} \\
& \\
& \quad \begin{aligned}
& =1(2 x)^{4}(-1)^{0}+4(2 x)^{3}(-1)^{1}+6(2 x)^{2}(-1)^{2} \\
& \quad+4(2 x)^{1}(-1)^{3}+4(2 x)^{0}(-1)^{4}
\end{aligned} \\
& \\
& \\
& \\
& \\
& (2 x-1)^{4}=16 x^{4}+4\left(8 x^{3}\right)(-1)+6\left(4 x^{2}\right)(1)+4(2 x)(-1)+1 \\
& (2 x-1)^{4}=16 x^{4}-32 x^{3}+24 x^{2}-8 x+1
\end{aligned}
$$

Financial Math

There are many applications and algebraic uses for financial math

- Compound interest is a geometric formula

Formula: $\quad A=P(1+i)^{n}$
A : accumulated amount at end of term
P : principle (amount)
i : interest represented by $\left(\frac{r}{n}\right), r$: interest rate per year, n : compounding periods n : represented by $N y, y$: number of years

- Substitute variable terms

Example: For $\$ 1000$ at an interst of 7% per year for 10 years, compounded semi-annually (twice a year)
$\therefore i=\frac{7 \%}{2}$
$i=3.5 \%$ or 0.035
$\therefore n=2(10)$
$n=20$
$\therefore A=1000(1+0.035)^{20}$
$A=1989.79$

- Rearrange the formula to solve for different situations

Example: Find the doubling time, compounded semi- annually 8 years
$\therefore P=1000$
$\therefore A=2000$
$\therefore i=\frac{r}{2}$
$\therefore 2000=1000(1+i)^{16}$
$2000=1000\left(1+\frac{r}{2}\right)^{16}$
$2=\left(1+\frac{r}{2}\right)^{16}$
$r=0.088 \rightarrow 8.8 \%$

- Present value used to find the amount needed to achieve a certain amount later

Formula: $\quad P=A(1+i)^{-n}$
Example: Want $\$ 1000000$ at the age of 35 , presently 18 , (18 years difference), an interest of 8%, compounded quarterly (four times a year)
$\therefore i=\frac{0.08}{4} \rightarrow 0.02$
$\therefore n=18(4) \rightarrow 72$
$P=1000000(1.02)^{-72}$
$P=240318.74$

- Ordinary annuity is compounding interest with consecutive inputs of value

$$
\begin{array}{ll}
\text { Formula: } & A=\frac{R\left[(1+i)^{n}-1\right]}{i} \\
\text { Example: } & a=1500 \\
& n=5 \\
& i=12 \% \\
& A=\frac{1500\left(1.12^{5}-1\right)}{0.12} \\
& A=9529.27
\end{array}
$$

- Present value or ordinary annuity reconstructs the ordinary annuity formula

$$
\text { Formula: } \quad P=\frac{R\left[1-(1+i)^{-n}\right]}{i}
$$

Example: $\quad R=10000$
Twice a year for 5 years compounded semi-annually
$i=15 \%$
$P=\frac{\left(10000\left(1-1.075^{-10}\right)\right)}{0.075}$
$P=68640.81$

Graphing

Direct and Partial Variation

Direct Variation

- A direct variation is a relationship between 2 variables in which one variable is a constant multiple of the other

Examples: $\quad y=5 x, y=x, y=k x, \frac{1}{2} y=x, y=2 x$

- The constant of variation is the number before the variable

Example: $\quad y=3 x, 3$ is the constant of variation

Example: \quad This graph shows an example of direct variation $y=4 x$

- In direct variation, the line will always go through the origin $(x, y)=(0,0)$

Partial Variation

- A partial variation is a relationship between 2 variables there is a constant multiple and a constant number

Examples: $\quad y=3 x+5, y=m x+b$

- The constant of variation is the number before the variable and the constant number is the number after the variable

Example: $\quad y=3 x+5,3$ is the constant of variation and 5 is the constant number

Example: \quad This graph shows an example of direct variation $y=2 x+4$

- Partial variation never goes through the origin
- In both direct and parital varaition, the line must always be stright

Plotting

When graphing, you have 2 axis. You have an x axis and an y axis. The x axis is always the horizontal line and the y axis is the vertical line. These lines both interest at the origin $(x, y)=(0,0)$

- A point identifies a position and can be represented by numbers (coordinates) or a variable
- Coordinates are points on a graph which can range to any integer
- An ordered pair is also a set of coordinates
- When given a coordinate, the first number is the x-coordinate and the second number is the y coordinate

Formula: $\quad(x, y)$
Example: $\quad(2,5)$

- Coordinates can be negative as well

Example: $\quad(-5,4)$
Example: $\quad(-2,-4)$
Example: $\quad(0,-3)$

Quadrants

- There are 4 quadrants when graphing. The quadrants are labelled in counter clockwise order starting at the top right quadrant. Quadrants are also known as the cast

- When asked of what quadrant a point is in, refer to the diagram above or to its positive or negative attribute

Given: $\quad(x, y)$
Qudrant 1: $\quad(+,+)$
Qudrant 2: $\quad(-,+)$
Qudrant 3: $\quad(-,-)$
Qudrant 4: $\quad(+,-)$

- If a point lands on an axis (line) or origin, it has no quadrant
- Ensure that you label the axis and points

Slope

Slope is simply put is the rate of change; the slope is expressed as a fraction. The variable term of slope is m

Example: $\quad m=\frac{3}{4}$

- A plane is a surface that goes on forever
- The Cartesian plane is a grid (graph) that has x and y coordinates
- The simplest way to find slope when given 2 points on a graph is to measure rise over run

Formula: $\quad m=\frac{\text { rise }}{\text { run }}$
Example: $\quad m=\frac{5}{10}=\frac{1}{2}$

- Slope can be referred to the flowing terms: slope, angle, steepness, grade, incline or rate of change

Slopes of line segments

Rises to the
right
$m=$ positive

Falls to the right
$m=$ negative

Horizontal line $y=b$ $m=0$

Vertical Line $m=$ undefined

- Although the above examples show line segments, these segments are actually lines. The notation for this should be that the lines end with arrows indicating that it goes on forever

Example:

- Rise is the vertical distance between 2 pointes (up and down); change in y or Δy
- Run is the horizontal distance between 2 points (across); change in x or Δx

Example:

- A fractional slope is NEVER expressed in any units

$$
m=\frac{\text { rise }}{\text { run }}=\frac{3}{5}
$$

- On a grid, you can physically count the rise and run
- On a grid it is critical that you ensure you start your slope from the point furthest to the left, then calculate the run, NEVER the other way around
- The run should never be negative
- You can only get a negative slope by encountering a negative rise. This may only happen if the point furthest to the left is also higher than the alternative point; this is also a slope that is falling to the right or a downward trend, all positive slopes are upward trends

Example:

6 m

$$
m=\frac{-2}{6}=-\frac{1}{3}
$$

- In some cases, you will be given a slope and a point, to find the other point, simply break down the slope into rise and run and add the rise to the y-coordinate and run to the x-coordinate

Example:

$$
\begin{aligned}
& \text { Point } A(2,1), m=\frac{5}{2} \\
& B=A(2,1)+m \\
& B=\frac{1}{2}+\frac{5}{2} \\
& B=\frac{4}{6}
\end{aligned}
$$

Slope Formula

When given 2 points, you can find the slope by both plotting the points and reading the graph, or use slope formula

- Slope formula is calculated by taking the coordinates of 2 points and subtracting their y and x values

Formula in professional: $\quad m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ or $\frac{\Delta y}{\Delta x}$ (change in y values over change in x values)
Formula in linear: $\quad m=\left(y_{-} 2-y_{-} 1\right) /\left(x_{-} 2-x_{-} 1\right)$ or $\Delta y / \Delta x$

- From 2 points, you take a y-coordinate and subtract it with the alternative y-coordinate and divide it by the difference between the x-coordinates. It is irrelevant of which x or y coordinate is subtracted as long as you remain consistent

$$
\begin{array}{ll}
\text { Example: } & A(2,5) B(11,25) m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& m=\frac{25-5}{11-2} \\
& m=\frac{20}{9}
\end{array}
$$

- Ensure that when you are dealing with negative coordinates, treat it as a negative integer and bracket the coordinate

Example:

$$
\begin{aligned}
& S(-4,-6) T(5,-3) \\
& m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& m=\frac{-3-(-6)}{5-(-4)} \\
& m=\frac{-3+6}{5+4} \\
& m=\frac{3}{9}=\frac{1}{3}
\end{aligned}
$$

Rate of Change

The rate of change is a change in one quantity relative to the change in another quantity

- Rate of change requires units. Units are given from the x or y labels
- Rate of change is similar to calculating slope
- Unit should be expressed as y over x

Example: $\quad \mathrm{km} / \mathrm{h}$

- To calculate the rate of change, simply calculate the $\frac{\Delta y}{\Delta x}$

Example: change in distance over change in time
Example: $\quad \frac{5}{20}=\frac{1}{4}$

- Always express rate of change as a decimal

Example: $\quad 0.25 \mathrm{~km} / \mathrm{h}$

- If the rate of change is positive, the slope is ascending and if it is negative, the slope is descending

Identifying linear and Non-linear relations

There are 3 ways of identifying if a relationship is linear of non-linear

1. Graph If the line is straight, it is a linear relationship
2. Equation If x is raised to the exponent 1 , it is a linear relationship
3. Table If the first differences are equal, it is a linear relationship

- First differences are calculated by using a table. The x axis is the first column, and should range to any integer and start from any integer. The y axis is the second column; it is labelled as either y values or the formula of the line in y intercept form. The third column is the first difference column
- First difference is also known as finite differences
- How first differences are calculated is by subtracting a y value by the previous y value
- Plug in the x values into the y value
- If ALL the first differences are equal, then the relationship is linear, otherwise, the relationship is non-linear

Formula:

- The first value in the series can't have a first difference for it has no previous value
- Sometimes, the y values column will already be set, otherwise, if only the formula is given, then plug in the x values

Example:

Side length (cm)	Volume $\left(\mathrm{cm}^{3}\right)$	First Difference
$\mathbf{1}$	$\mathbf{1}$	-
2	$\mathbf{8}$	$\mathbf{1 - 8}=\mathbf{7}$
3	27	$\mathbf{2 7 - 8}=\mathbf{1 9}$
4	$\mathbf{6 4}$	$\mathbf{6 4 - 2 7}=\mathbf{3 7}$
$\mathbf{5}$	$\mathbf{1 2 5}$	$\mathbf{1 2 5 - 6 4}=\mathbf{6 1}$

$\because 7 \neq 19 \therefore$ This relationship is not linear

- It is not necessary to continue the first differences if even 1 of the relations are not equal

Example:

x	$3 x+2=9$	First Difference
$\mathbf{0}$	$\mathbf{3 (0) + 2 = 2}$	-
1	$3(1)+2=5$	3
2	$3(2)+2=8$	3
3	$3(3)+2=11$	3
$\mathbf{4}$	$\mathbf{3 (4) + 2 = 1 4}$	3
\because The first differences are constant, this is a linear relationship		

The chart below displays the 3 techniques of how to identify linear and non-linear relationships

	Graph		Equation		Table	
	Identify	Example	Identify	Example	Identify	Example
Linear	Straight Line		x to the power of 1	x^{1}	Constant	3,3,3
Non-Linear	Not a straight line		x to the power other than 1	x^{3}	Not constant	-1,4,5

Collinear

If 3 or more points have an equal slope, then the points are collinear (on the same line) else if even 1 point doesn't have a similar slope to the other points, then the points are not collinear (not on the same line)

- When given 3 or more points, find the slope by combining 2 points and using slope formula. Pair up all points and until there is a difference of slope, do not discontinue, else the points are collinear
- Ensure that the slope is in lowest form before making any judgements

Example: \quad Given the points $A(-1,-1) B(2,1) C(5,3)$

$$
\begin{aligned}
& m A B=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{1-(-1)}{2-(-1)}=\frac{2}{3} \\
& m A C=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{3-(-1)}{5-(-1)}=\frac{4}{6}=\frac{2}{3} \\
& m B C=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{3-1}{5-2}=\frac{2}{3} \\
& \because m A B=m A C=m B C \quad \therefore A, B, C \text { are collinear }
\end{aligned}
$$

Example: \quad Given the points $D(1,2) E(5,6) F(9,9)$

$$
\begin{aligned}
& m D E=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{6-2}{5-1}=\frac{4}{4}=1 \\
& m D F=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{9-2}{9-1}=\frac{7}{8}
\end{aligned}
$$

$\because m D E \neq m D F$ they are not collinear

Graphing Equations

A line can be graphed using a table of values

- Remember that when given a table of values, the plotting does not make a line, but a line segment. Therefore, do not draw arrows at the end of the line when graphed

Example: $\quad y=x$

\boldsymbol{x}	\boldsymbol{y}	$(\boldsymbol{x}, \boldsymbol{y})$
-2	-2	$(-\mathbf{2},-\mathbf{2})$
$-\mathbf{1}$	$-\mathbf{1}$	$(-\mathbf{1},-\mathbf{1})$
$\mathbf{0}$	$\mathbf{0}$	$(\mathbf{0}, \mathbf{0})$
$\mathbf{1}$	$\mathbf{1}$	$(\mathbf{1}, \mathbf{1})$
$\mathbf{2}$	$\mathbf{2}$	$(\mathbf{2}, \mathbf{2})$

These 5 points plotted would go through the origin in an upward trend

- Ensure that you always label the axis and write the equation of the line in slope y-intercept form

Example: $\quad y=-2 x+3$

x	$-2 x+3=y$	(x, y)
-2	$-2(-2)+3=7$	$(-2,7)$
-1	$-2(-1)+3=5$	$(-1,5)$
0	$-2(0)+3=3$	$(0,3)$
1	$-2(1)+3=1$	$(1,1)$
2	$-2(2)+3=-1$	$(2,-1)$

Label the line as $y=-2 x+3$

- Always be sure that the points satisfy the equatioon

Equation of a line

The equation $y=m x+b$ is the general form of a line. This term is also referred to as y-intercept form or slope y-intercept form

- $\quad y$ represents the y axis
- m represents the slope (formula or rise over run)
- $\quad b$ represents y-intercept (y-int) which is where the line intercepts with the y axis

Example: $\quad y=\frac{1}{2} x+5$
$m=\frac{1}{2}$
$b=5$

- To graph this, you start at the y-intercept point or $b ;(0, b)$
- Use the slope to guide you to the net point by using rise over run (remember if negative, the slope is going down)
- Ensure to label axis's and the line and remember to put arrows for it is not a line segment

$$
\text { Example: } \quad y=-\frac{4}{3} x+7
$$

- When given the slope and y-intercept, you can create a formula

Example: $\quad m=\frac{3}{4} ; b=-2$

$$
\therefore y=\frac{3}{4} x-2
$$

- x-intercept (x-int) is similar to y-intercept except that x-intercept is where the line intercepts with the x-axis
- When only given $y=$ or $x=$, it is either a vertical line or horizontal line. The integer given is where the intercept is

Example: $\quad y=3$; Horizontal line
Example: $\quad x=-5$; Vertical line

- When something is missing from the equation, it indicates that the value is 0

Example: $\quad y=m x$; goes through the origin/direct variation for it has no b value

Standard Form

Standard form has all variables and constants of $y=m x+b$ but is expressed as $A x+B y+C=0$.
There are several conditions that must be true for an equation to be in standard form

- A, B, C are all integers
- A, B, C can be 0 but A and B can't both be 0 at the same time
- Always write the x-term, then y-term then integer term
- All the terms must be written on the left side
- Always write it in lowest terms
- x can't be negative when in standard form, simply multiply each term by -1

Example: $\quad 3 x+2 y+1=0$

- To convert standard form into slope y-intercept form, isolate the y term

Example: $\quad 3 x+2 y+1=0$
$2 y=-3 x-1$
$\frac{2 y}{2}=-\frac{3}{2} x-\frac{1}{2}$
$y=-\frac{3}{2} x-\frac{1}{2}$

- To convert slope y-intercept form into standard form, move all terms to the right side, in x, y, \# order

$$
\begin{array}{ll}
\text { Example: } & y=3 x+5 \\
& -3 x+y=5 \\
& -3 x+y-5=0 \\
& 3 x-y+5=0
\end{array}
$$

Intercepts

In a linear line or line segment, there can only be up to 2 intercepts, one x and y. To find the intercepts in an equation you must first convert the equation into standard form if not already

$$
\begin{array}{ll}
\text { Example: } & y=-2 x+4 \\
& 2 x+y=4 \\
& 2 x+y-4=0
\end{array}
$$

- To find the x-intercept, in the standard form equation, make $y=0$, then solve

$$
\begin{array}{ll}
\text { Example: } & 2 x+y-4=0 \\
& 2 x+0-4=0 \\
2 x-4=0 \\
& 2 x=4 \\
& \frac{2 x}{2}=\frac{4}{2} \\
& x=2
\end{array}
$$

- To find the y-intercept, in the standard form equation, make $x=0$, then solve

Example: $\quad 2 x+y-4=0$
$2(0)+y-4=0$
$y-4=0$
$y=4$

- To graph this, simply convert each intercept into a coordinate, then plot the coordinates and link them to form a line segment

Example: $\quad x=2 ; \therefore A(2,0)$
Example: $\quad y=4 ; \therefore B(0,4)$

- When given intercepts, and you are asked to find the slope, first convert each intercept into coordinates

Example: $\quad x=2 ; \therefore A(2,0) ; y=4 ; \therefore B(0,4)$

- When given 2 coordinates, you can calculate slope using the slope formula

$$
\begin{array}{ll}
\text { Example: } & m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4-0}{0-2}=\frac{4}{-2}=-2 \\
& \therefore m=-2
\end{array}
$$

Length of a Line Segment

On a grid, finding the length of a line segment is similar to the equation of a line.

- To solve, simply plug in the coordinates given

Example: \quad Find the distance between $A(2,7), B(-9,4)$

$$
\begin{aligned}
& L=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& L=\sqrt{(-9-2)^{2}+(4-7)^{2}} \\
& L=\sqrt{121+9} \\
& L=\sqrt{130 \text { units }}
\end{aligned}
$$

- When given a vertical or horizontal line and a coordinate, simply take the missing coordinate from the point and plug it into the line equation

$$
\begin{array}{ll}
\text { Example: } & y=3,(-2,-2) \\
& \therefore(-2,3) \\
& x=-2 \\
& L=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& L=\sqrt{(-2+2)^{2}+(3+2)^{2}} \\
& L=\sqrt{25} \\
& L=5
\end{array}
$$

- The midpoint of a line segment is the average of its endpoints

Formula:

Example: \quad Find the midpoint of $(2,0),(0,-3)$
$=\left(\frac{2+0}{2}, \frac{0-3}{2}\right)$
$=\left(1,-\frac{3}{2}\right)$
Example: \quad Find the midpoint of $(a, 2 b),(2 a, 3 b)$
$=\left(\frac{a+2 a}{2}, \frac{2 a+3 b}{2}\right)$
$=\left(\frac{3 a}{1}, \frac{5 b}{2}\right)$
Example: Let $P(6,-8)$ and $Q(6, R)$. Midpoint of $P Q$ is $(t, 4)$. Find t and R

$$
t=\frac{6+6}{2}
$$

$=\frac{12}{2}$
$=6$
$4=\frac{-8+R}{2}$
$8=-8+R$
$R=16$

Parallel and Perpendicular Lines

When given 2 line equations in slope y-intercept form, there are ways to determine whether they are parallel or perpendicular

- Parallel lines never cross and remain the same distance apart; Symbol: ||
- Parallel lines are marked with arrows pointing in the same direction

Example:

- Parallel lines can be easily identified when in slope y-intercept form for the slopes of the 2 lines will be equivalent

Example: Which lines are parallel when given the coordinates?

$$
\begin{aligned}
& m A B=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{7-2}{3-1}=\frac{5}{4} \\
& m C D=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{6-1}{7-3}=\frac{5}{4} \\
& m E F=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-2-1}{3-(-4)}=-\frac{3}{7} \\
& m G H=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-6-(-3)}{3-(-4)}=-\frac{3}{7} \\
& \because m A B=m C D \quad \therefore A B\|C D ; \because m E F=m G H \quad \therefore E F\| G H
\end{aligned}
$$

- Perpendicular lines cross at a 90° angle; Symbol: \perp
- Perpendicular lines are marked with a square where the intersection is

Example:

- Perpendicular lines can be easily identified when in slope y-intercept form for one of the slopes of the 2 lines will be a negative reciprocal of the other

Example: Are these lines perpendicular given the slopes?

$$
\begin{aligned}
& m A B=-\frac{1}{8} \\
& m C D=8 \because m A B \perp m C D \quad \therefore A B \perp C D
\end{aligned}
$$

Distance from a point to a line

- The distance from a point to a line is always considered to be perpendicular distance (shortest distance)

Example:

- To solve, you will be given 2 things, both a point and a lines
- Find the perpendicular slope from the line and make an equation from the coordinates and the slope
- Next, find the point of intersection and then find the distance from the point and the intersection

Example: Find the distance from $(-3,1)$ to $y=x+10$

$$
y=x+10
$$

$m \perp=-1$
$y-y_{1}=m\left(x-x_{1}\right)$
$y=1=-1(x+3)$
$y-1=-x-3$
$y=-x-2 y=y$
$-x-2=x+10$
$2 x=-12$
$x=-6$
$y=x+10$
$y=-6+10$
$y=4$
\therefore the POI $=(-6,4) L=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
$L=\sqrt{(-6+3)^{2}+(4-1)^{2}}$
$L=\sqrt{(-3)^{2}+(3)^{2}}$
$L=\sqrt{9+9}$
$L=\sqrt{18}$
$L=\sqrt{18}$ units
Example: \quad Find the distance from $(4,6)$ to the line $x=-4$
distance $=4-(-4)$

$$
\begin{array}{ll}
& =8 \text { units } \\
& y=8 \\
\text { Example: } & y=x-4,(0,0) \\
& m \perp=-1 \\
& y-0=-1(x-0) \\
y=-x y=y \\
& -x=x-4 \\
& x=2 \\
& y=2-4 \\
& y=-2 \\
& (2,-2) \\
& L=\sqrt{(2-0)^{2}+(-2-0)^{2}} \\
& L=\sqrt{4+4} \\
& L=\sqrt{8}
\end{array}
$$

Finding Equations

These are several ways to find an equation of a line when given enough information. From the information given, you plug in items into the equation and solve

- The simplest equation we can use to allow easy substitution is represented through this formula

$$
\text { Formula: } \quad y-y_{1}=m\left(x-x_{1}\right)
$$

Solve for b when given a slope and point
Example: $\quad A(x, y)=A(2,2)$ and $m=5=\frac{5}{1}$

- Plug in the information given into the representative variables and solve for the missing variable. Use the coordinates of the point as your x and y variables in your equation

Example: \quad Without $y-y_{1}=m\left(x-x_{1}\right)$

$$
\begin{aligned}
& y=m x+b \\
& 2=5(2)+b
\end{aligned}
$$

$$
2-2=10+b-2
$$

$$
0-b=10+b-2-b
$$

$$
-b=10-2
$$

$$
-b=10-2
$$

$$
b=-10+2
$$

$$
b=-8 b=-8
$$

$$
\therefore y=5 x-8
$$

$$
\begin{aligned}
& \text { With } y-y_{1}=m\left(x-x_{1}\right) \\
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-2=5(x-2) \\
& y-2=5 x-10 \\
& y=5 x-8
\end{aligned}
$$

- Plug in missing value into the final equation

Example: $\quad y=5 x-8$

Solve for b when given an equation and a point

- Any point given on the line must satisfy the equation for the line

Example: $\quad y=-2 x+b$ and $A(2,1)$
to solve b, substitute the point into the equation
$y=-x+b$
$1=-2(2)+b$
$1=-4+b$
$1+4=-4+b+5$
$b=5$
$\therefore y=-2 x+5$
Solve for m when given b and a point

- We require 2 points in order to find slope by using the slope equation

Example: $\quad y=m x-2$ and $A(5,4)$
to solve m, use b as a point (intercept)
$A(5,4)$ and $\mathrm{B}(0,-2)$ (y-intercept)
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
$m=\frac{-2-4}{0-5}$
$m=-\frac{6}{5}$
$\therefore y=-\frac{6}{5} x-2$

- We given 2 points solve m and then substitute it into $y-y_{1}=m\left(x-x_{1}\right)$ to solve

Example: \quad Find the equation of a line through $A(-7,2), B(6,-9)$
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
$m=\frac{-9-2}{-7-6}$
$m=\frac{11}{13} y-y_{1}=m\left(x-x_{1}\right)$
$y-2=-\frac{11}{13}(x+7)$
$y=-\frac{11}{13} x-\frac{77}{13}+2$
$y=-\frac{11}{13} x-\frac{77}{13}+\frac{26}{13}$
$y=-\frac{11}{13} x-\frac{51}{13}$

Making Equations

When given 2 points, you can form an equation of a line

- From the 2 points, find the slope through slope equation

Example: $\quad A(-1,3)$ and $B(1,-1)$

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

$$
m=\frac{-1-3}{1-(-1)}
$$

$$
m=-\frac{4}{2}=-2
$$

- Then substitute in either of the points into $y=m x+b$ to find b

$$
\begin{array}{ll}
\text { Example: } & A(-1,3) \text { and } B(1,-1) \text { and } m=-2 \\
& y=m x+b \\
3 & =-2(-1)+b \\
3 & =2+b \\
& b=1 \\
\therefore y & =-2 x+1
\end{array}
$$

- It is irrelevant of which point you substitute in, be sure to watch where the x and y coordinates go

Example: $\quad A(-3,-2)$ and $B(6,-8)$

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

$$
\mathrm{m}=\frac{-8-(-2)}{6-(-3)}
$$

$$
m=-\frac{6}{9}=-\frac{2}{3}
$$

$$
y=m x+b
$$

$$
-2=-\frac{2}{3}(3)+b
$$

$$
-2=2+b
$$

$$
-2-2=2+b-2
$$

$$
\mathrm{b}=-4
$$

$$
\therefore y=-\frac{2}{3 x}-4
$$

Linear Systems

A linear system is a solution for 2 equations/lines where a point or set of points satisfies both equations/lines. There are 3 types of solutions

- Point of intersection (POI) is the point(s) that satisfies the equations/lines
- 2 parallel lines
- Never cross
- No point that satisfies both equations/lines. Also referred to as coincident lines

Example:

no POI

- 2 non-parallel lines
- Cross once/intercept once
- Only 1 point that satisfies both equations/lines

Example:

$$
\mathrm{POI}=(1,-1)
$$

- 2 identical lines
- Every point intercepts
- Every point satisfies the equations/lines

Example: $\quad 2 x+3 y=6$ and $4 x+6 y=12$

Finding the point of intersection (POI) can be found through graphing equations/lines. The point of intersection is where the 2 lines cross/intercept. Therefore, this point satisfies both equations/lines thus giving us the solution to the linear system

- When using the graphing method, it's best to have both equations/lines in slope y-intercept form. You can also use x and y-intercepts

Formula: $\quad y=y$
Example: $\quad y=\frac{2}{3}-5$ and $x+2 y=4$
$x+2 y=4 ; x$-int $=(4,0), y$-int $=(0,2)$

- To verify that the POI is correct, simply plug in the POI into both equations. If the left side of the equation is equal to the right side, the $\mathbf{P O I}$ is correct

Example: $\quad y=\frac{2}{3} x-5$
$-1=\frac{2}{3}(6)-5$
$-1=4-5$
$-1=-1$
LS (Left side) $=$ RS (Right side)
$x+2 y=4$
$6+2(-1)=4$
$6-2=4$
$4=4$
LS (Left side) $=$ RS (Right side)
$\mathrm{LS}=\mathrm{RS} \therefore$ the point $(6,-1)$ satisfies both equations/lines
\because the point is on both lines it is the solution to the linear system

Finding the point of intersection (POI) can be found algebraically

- To solve algebraically, the first step is to make each equation equal to each other (remove y)
- Ensure both equations are in slope y-intercept, else convert it into slope y-intercept
- Then solve (isolate x)

$$
\begin{array}{ll}
\text { Example: } & y=30 x+50 \text { and } c=35 x+40 \\
& 30 x+50=35 x+40 \\
& 30 x+50-50=35 x+40-50 \\
& 30 x=35 x-10 \\
& 30 x-35 x=35 x-10-35 x \\
& \frac{-5 x}{-5}=\frac{-10}{-5} \\
& x=2
\end{array}
$$

- Use the result of this and take as the x coordinate of the POI
- Next, to solve the y coordinate, plug the x coordinate from the POI into either equation

$$
\text { Example: } \quad \begin{array}{ll}
& y=30 x+50 \\
& y=30(2)+50 \\
& y=60+50 \\
& y=110
\end{array}
$$

\therefore the Point of intersection or $\mathrm{POI}=(2,110)$

Finding the point of intersection (POI) can be found through substitution

- First you must convert one of the equations to solve for x (isolate)
- Substitute the result of x into the alternate equation and solve for y
- Plug y into the x statement to solve for x
- $\quad x$ and y can be switched for the above statement

Example: $\quad 5 x+y=11 ; x-y=-7$
$x=y-75(y-7)+y=11$
$5 y-35+y=11$
$6 y=11+35$
$6 y=46$
$y=\frac{46}{6}=\frac{23}{3} x=\frac{23}{3}-7$
$x=\frac{23}{3}-\frac{21}{3}$
$x=\frac{2}{3} \therefore$ the POI $=\left(\frac{2}{3}, \frac{23}{3}\right)$

Finding the point of intersection (POI) can be found through elimination

- Simplify the equations, eliminate any fractions and collect like terms
- First you must convert both of the equations to align with similar variables
- Add the 2 equations in aligned order and eliminate similar variables and constantans
- Isolate 1 of the variables and then substitute it into one of the equations

Example: $\quad 4 x-3 y=-10 ; 3 y+2 x=32$
$4 x-3 y=-10$
$\underline{2 x+3 y=32}$
$6 x=12$
$x=2$
$4 x-3 y=-10$
$4(2)-3 y=-10$
$8-3 y=-10$
$-3 y=-18$
$y=6$
\therefore the POI $=(2,6)$
Example: $\quad 6 x-5 y=-3 \rightarrow 6 x-5 y=-3 \rightarrow \times 2 \rightarrow 12 x-10 y=-6$
$2 y-9 x=-1 \rightarrow-9 x+2 y=-1 \rightarrow \times 5 \rightarrow-45 x+10 y=-5$
$12 x-10 y=-6$
$-45 x+10 y=-5$
$-33 x=-11$
$x=\frac{1}{3}$
$12 x-10 y=-6$
$\frac{12}{1}\left(\frac{1}{3}\right)-10 y=-6$
$\frac{12}{3}-10 y=-6$
$4-10 y=-6$
$-10 y=-10$
$y=1$
\therefore the POI $=\left(\frac{1}{3}, 1\right)$

- Elimination and fractions. Remove the fractions by multiplying each term by a common denominator then simply work through

$$
\begin{array}{ll}
\text { Example: } & \frac{x}{3}-\frac{y}{6}=-\frac{2}{3} \rightarrow \times 6 \rightarrow 6\left(\frac{x}{3}\right)-6\left(-\frac{y}{6}\right)=6\left(-\frac{2}{3}\right) \rightarrow 2 x-y=-4 \\
& \frac{x}{12}-\frac{y}{4}=\frac{3}{2} \rightarrow \times 12 \rightarrow 12\left(\frac{x}{12}\right)+12\left(-\frac{y}{4}\right)=12\left(\frac{3}{2}\right) \rightarrow x-3 y=18 \\
2 x-y=-4 \rightarrow \times 1 \rightarrow 2 x-y=-4 \\
& x-3 y=18 \rightarrow \times 2 \rightarrow 2 x-6 y=36 \\
& 5 y=-40 \\
& y=-8 \\
& 2 x(-8)=-4 \\
& 2 x=-12 \\
& x=6 \\
& \therefore \text { the POI }=(6,-8)
\end{array}
$$

- Elimination and decimals. Multiply each term by 10 to rid of any decimals

$$
\begin{array}{ll}
\text { Example: } & 0.5 x-1.3 y=1.23 \\
& \underline{4 x-2 y=0.6} \\
& 5 x-13 y=12.3 \\
& \underline{40 x-20 y=6} \\
200 x-520 y=492 \\
& \underline{200 x-100 y=30} \\
& -420 y=462 \\
& y=-1.1 \\
& 5 x+14.3=12.3 \\
& 5 x=-2 \\
& x=-0.4 \\
& \therefore \text { the POI }=(-0.4,-1.1)
\end{array}
$$

- If there is no system (parallel lines) then there will be no variable to represent the POI. The variables should eliminate themselves

$$
\text { Example: } \quad 18 r+12 s=30
$$

$18 r+12 s=14$
undefined $=16$
\therefore the system is parallel

- If the lines are equivalent and intercept at every segment(coincident lines) then the resolution to both equations will be equal

$$
\text { Example: } \quad \begin{aligned}
& 4 x-3 y=5 \rightarrow \times 2 \rightarrow 8 x-6 y=10 \\
& \underline{8 x-6 y=10} \\
& 8 x-6 y=10 \\
& \\
& \hline 0 x-6 y=10 \\
& \\
& 0=0
\end{aligned}
$$

\therefore the system is ∞ equal

Solving problems using linear systems

- Through either substitution or elimination, solving word problems can be made simple

Example: Calculate the interest earned on $\$ 4000$ for 2 years at 6.5% simply
$I=p r t p=4000, r=0.065, t=2=4000 \times 0.065 \times 2$
$=520$
\therefore the interest earned was 520
Example: Say you drove 470 km in 5 hours from Snowball corners to North Bay. For part of the trip you drove at 90 km per hour and part at 100 km per hour. How far at each speeds
$v=\frac{d}{t}$
Let x be distance at 100 km per hour
Let y be distance at 90 km per hour

Example: A small sailboat takes 3 hours to travel 30 km with the current and 4 hours to return against the current. Find the speed of the boat and the current Let $b=$ speed of boat (no current)
Let $c=$ speed of current (no boat)
$d=v t$

Equivalent Equations

- An equation can have an infinite number of equivalent forms

Example: $\quad x-3=1$
Multiplied by 2: $2 \mathrm{x}-6=2$
Both the equations solve x for 4 even though they are different equations

Equivalent Systems

- Like equivalent equations there are equivalent systems. Based on the same principle, 2 systems can be alike

Example: System A
$x-y=3 ; x+y=7$
$y=x-3 ; y=-x+7$
$x-3=-x+7$
$2 x=10$
$x=5$
$y=5-3$
$y=2$
\therefore the POI $=(5,2)$
System B
$x=5 ; y=2$
\therefore the POI $=(5,2)$

Types of Graphs

Graphs should generally have the following depending on the type of graph

- Chart title
- Axis titles
- Legend/key
- Data labels
- Data table
- Axes
- Gridlines

There are several types of graphs; each with its own intended purpose to display results

Bar Graphs

- To show how something changes over time and for comparing
- Independent variable is on x axis and dependant is on y axis
- Typically used to convey information over a long period of time

Line Graphs

- Comparing 2 variables
- Independent variable is on x axis and dependant is on y axis
- Show trends therefore predictions can be made (patterns)

\checkmark Chart title, axis titles, legend, axes, gridlines

Pie Graphs

- Show percentages of a whole
- Dividing a circle into different section to represent the percent of that variable
- Finding percentages using degrees

Formula: $\quad \frac{\text { total \# in category }}{\text { total } \# \text { in sample }} \times 360^{\circ}$

Quadratic Functions

A quadratic function is a polynomial, when graphed with exponents which will result in a non-linear display

- Expressions of the form $y=x^{2}$ are called quadratic functions. Quadratic means square. These expressions are also known as a parabola
Example:

Example: $\quad y=x^{2}$
- Parabolas are symmetric. They are a reflection of each of them along a line. In the case of $y=x^{2}$, the axis of symmetry is the line $x=0(y$-axis)
- Parabolas also have a vertex, or turning points. The vertex of $y=x^{2}$ is $(0,0)$. The vertex always intersects the axis of symmetry

Example: $\quad x^{2}=$ Quadratic

- A relation is a set of ordered pairs

Example: $\quad t\{(6,7),(8,9),(10,11)\}$

- A Function is a special relation between ordered pairs in which, for every value of x, there is only 1 value of y

Example: $\quad\{(2,3),(4,5),(6,7),(8,9)\}$
The relation is a function
Example: $\quad\{(6,2),(6,4),(8,6),(10,8)\}$
The relation is not a function
Example: $\quad\{(-4,8),(-2,4),(0,0),(2,4),(4,8)\}$
The relation is a function

- The set of first elements in a relation is called the domain of the relation. x values are the domain

Example: $\quad\{(2,3),(4,5),(6,7),(8,9)\}$
Domain: $\{2,4,6,8\}$

- The set of second elements in a relation is called the range of the relation. y values are the range

Example: $\quad\{(2,3),(4,5),(6,7),(8,9)\}$
Range: $\{3,5,7,9\}$

- A function can be justified as a set of ordered pairs in which, for each element in the domain, there is exactly one element in the range

Example: $\quad t\{(6,7),(8,9),(10,11)\}$
The relation is a function

Example: $\quad q\{(4,2),(4,3),(4,4),(6,9)\}$
The relation is not a function because there are $3 y$ values for $x=4$
Example: $\quad r\{(-1,-1),(-1,-1),(-2,4),(-1,2),(0,0),(1,2),(2,4)\}$
The relation is not a function because of $(-1,-1)$ and $(-1,2)$

- The minimum value of the domain and range can be determined by the lowest value within the series
- The maximum value of the domain and range can be determined by the greatest value within the series. Be aware that these values can be infinite or a set of real numbers
- A quadratic function can have a y intercept

Example: $\quad y=x^{2}+2 ; y$-int $=2$
Table of Values:

\boldsymbol{x}	\boldsymbol{y}
$-\mathbf{4}$	18
$-\mathbf{2}$	6
$\mathbf{0}$	2
$\mathbf{2}$	6
$\mathbf{4}$	18

The graph of $y=x^{2}+2$ moved up 2 units in comparison with $x=x^{2}$
Vertex $(0,2)$ axis of symmetry $x=0$
$\operatorname{Max}\{y=\infty\} ; \operatorname{Min}\{y=2\}$

- The graph of a relation can be analyzed to determine if the relation is a function. Using a vertical line will determine if there are any corresponding values on the same axis ergo determining whether the relation is a function or not. If the vertical line cuts the graph more than once, it is not a function
- The standard equation of a quadratic function

$$
\begin{array}{ll}
\text { Formula: } & \begin{array}{l}
y=a x^{2} \\
a=\text { vertical stretch or shrink }
\end{array} \\
& \begin{array}{l}
y=x^{2}+k \\
\text { Formula: } \\
\end{array} \\
& k=\text { vertical translation } \\
\text { Formula: } & y=a x^{2}+k \\
& \begin{array}{l}
a=\text { vertical stretch or shrink } \\
k
\end{array} \\
& =\text { vertical translation }
\end{array}
$$

- The larger a is, the narrower the parabola will be
- Identify all aspects of the following

Example: $\quad y=4 x^{2}$
Vertex: $(0,0)$
Axis of symmetry: $x=0(y-$ axis $)$
Max: $y=\infty$
Min: 0
Domain: $x \in \mathbb{R}$
Range: $y \geq 0, y \in \mathbb{R}$

- Expanded quadratic function

$$
\begin{array}{ll}
\text { Formula: } & y=a(x-h)^{2}+k \\
& a=\text { Vertical stretch/shrink; if } a<0, \text { opens downward on a reflection in } x \text {-axis } \\
& (x-h)=\text { Horizontal translation } \\
& k=\text { Vertical translation }
\end{array}
$$

- To convert $y=x^{2} \rightarrow y=a(x-h)^{2}+k$, use the following table
Operation Resulting Equation Transforming

Reflects in the x-axis, if $a<0$
Multiply by \boldsymbol{a}

$$
y=a x^{2}
$$

Replace \boldsymbol{x} by $(\boldsymbol{x}-\boldsymbol{h})$

$$
y=a(x-h)^{2}
$$

Add \boldsymbol{k}

$$
y=a(x-h)^{2}+k
$$

Shrinks vertically (widens), if $-1<a<1$
Shifts h units to the right, if $h>0$
Shifts h units to the left, if $k>0$
Shifts k units upward, if $k>0$
Shifts k units downward, if $k<0$

Property	Sign of a positive	Sign of a negative
Vertex	(h, k)	(h, k)
Axis of Symmetry	$x=h$	$x=h$
Direction of Opening	Up	Down
Comparison with $\boldsymbol{y}=\boldsymbol{a} \boldsymbol{x}^{\mathbf{2}}$	Congruent	Congruent

Examples: \quad Compare $y=3 x^{2}, y=3(x-2)^{2}, y=3(x-2)^{2}+4$

$y=3 x^{2}$
$\mathrm{V}:(0,0)$
$\mathrm{D}: x \in \mathbb{R}$
$\mathrm{R}: y \geq 0$
Max: ∞
Min: 0
Up
$y=3(x-2)^{2}$
$\mathrm{V}:(2,0)$
D: $x \in \mathbb{R}$
$\mathrm{R}: y \geq 0$
Max: ∞
Min: 0
Up
$y=3(x-2)^{2}+4$
$\mathrm{V}:(2,4)$
$\mathrm{D}: x \in \mathbb{R}$
R: $y \geq 4$
Max: ∞
Min: 4
Up

- Graphing $y=a x^{2}+b x+c$ by completing the (perfect) square

$$
\text { Formula: } \quad y=a x^{2}+b x+c
$$

- To solve, get the value of half of b
- Square the value
- Make 2 instances of the value, one negative and one positive and place them within the formula following b
- Factor equation

$$
\begin{array}{ll}
\text { Example: } & y=x^{2}+8 x+7 \\
y=x^{2}+8 x+4^{2}-4^{2}+7 \\
y=x^{2}+8 x+16-16+7 \\
& y=(x+4)^{2}-9
\end{array}
$$

- The end result should be $y=a(x-h)^{2}+k$
- If $k>0, k$ is the maximum of the function
- If $k<0, k$ is the minimum of the function
- Axis of symmetry is $-h$
- h, k is the vertex point
- Be aware that any equation can be factored by going into fractions

$$
\text { Example: } \quad \begin{aligned}
y & =x^{2}+9 x+2 \\
y & =x^{2}+9 x+\left(\frac{9}{2}\right)^{2}-\left(\frac{9}{2}\right)^{2}+2 \\
y & =x^{2}+9 x+\frac{81}{4}-\frac{81}{4}+2 \\
y & =\left(x+\frac{9}{2}\right)^{2}-\frac{81}{4}+2 \\
y & =\left(x+\frac{9}{2}\right)^{2}-\frac{81}{4}+\frac{8}{4} \\
y & =\left(x+\frac{9}{2}\right)^{2}-\frac{73}{4}
\end{aligned}
$$

Example: $\quad y=-\frac{1}{2} x^{2}+\frac{3}{5} x+9$

$$
y=-\frac{1}{2}\left(x^{2}-\frac{6}{5} x\right)+9
$$

$$
y=-\frac{1}{2}\left(x^{2}-\frac{6}{5} x+\left(\frac{6}{10}\right)^{2}-\left(\frac{6}{10}\right)^{2}\right)+9
$$

$$
y=-\frac{1}{2}\left(x^{2}-\frac{6}{5} x+\frac{36}{100}-\frac{36}{100}\right)+9
$$

$$
y=-\frac{1}{2}\left(x-\frac{6}{10}\right)^{2}+\frac{36}{200}+9
$$

$$
y=-\frac{1}{2}\left(x-\frac{3}{5}\right)^{2}+\frac{9}{50}+9
$$

$$
y=-\frac{1}{2}\left(x-\frac{3}{5}\right)^{2}+\frac{359}{50}
$$

$$
\mathrm{V}=\left(\frac{3}{5}, \frac{459}{50}\right)
$$

- Common factors first

$$
\begin{array}{ll}
\text { Example: } & y=2 x^{2}+4 x+3 \\
& y=2\left(x^{2}+2 x\right)+3 \\
y=2\left(x^{2}+2 x+1^{2}-1^{2}\right) 3 \\
& y=2\left((x+1)^{2}-1\right)+3 \\
y & =2(x+1)^{2}-2+3 \\
& y=2(x+1)^{2}+1
\end{array}
$$

- Rearrange to solve

$$
\begin{array}{ll}
\text { Example: } & y=10 x-5 x^{2} \\
& y=-5 x^{2}+10 x \\
& y=-5\left(x^{2}-2 x\right) \\
& y=-5\left(x^{2}-2 x+1^{2}-1^{2}\right)
\end{array}
$$

$$
y=-5(x-1)^{2}+5
$$

- Problem solving

Example: You have 600 m of fence. You enclose a rectangular area. What dimensions yield the max area? What is the max area
$A=l w$
$600=2 x+2 y$
$600-2 x=2 y$
$\frac{600-2 x}{2}=y$
$y=300-x$
$\therefore A=l w$
$A=x(300-x)$
$A=300 x-x^{2}$
$A=-x^{2}+300 x$
$A=-\left(x^{2}-300 x\right)$
$A=-\left(x^{2}-300 x+150^{2}-150^{2}\right)$
$A=-(x-150)^{2}+150^{2}$
$A=-(x-150)^{2}+22500$
$\mathrm{V}=(150,22500)$
$\therefore x=150$
$y=300-150$
$y=150$
150×150
$A=22500 \mathrm{~m}^{2}$

Solving Quadratic Equations

- Solving an equation means finding values(s) for x
- Solve the bracketed terms to find both intercepts points of the parabola

$$
\begin{array}{ll}
\text { Example: } & y=2 x^{2}-x-3 ; \text { Adds: }-1 \text {, Multiplies: }-6 \\
& y=2 x^{2}+2 x-3 x-3 \\
& y=2 x(x+1)-3(x+1) \\
y=(2 x-3)(x+1) \\
2 x-3=0 \\
& 2 x=3 \\
& x=\frac{3}{2} \\
& x+1=0 \\
& x=-1
\end{array}
$$

- Get the whole equation on one side to create a quadratic function and solve for x
- Solve for the square of the function to find it's vertex
- Find it's y-int by substituting 0 for x

$$
\begin{array}{ll}
\text { Example: } & x^{2}-3 x=-2 \\
& x^{2}-3 x+2=0 \\
& (x-1)(x-2)=0 \\
& x-1=0 \\
x=1 \\
& x-2=0 \\
& x=2 \\
y=x^{2}-3 x+2 \\
& y=x^{2}-3 x+\frac{9}{4}-\frac{9}{4}+2 \\
& y=\left(x-\frac{3}{2}\right)^{2}-\frac{9}{4}+\frac{8}{4} \\
& y=\left(x-\frac{3}{2}\right)^{2}-\frac{1}{4} \\
& \mathrm{~V}=\left(\frac{3}{2},-\frac{1}{4}\right) \\
& y \text {-int }=0^{2}-3(0)+2 \\
y \text {-int }=2=(0,2)
\end{array}
$$

- Common factors first

$$
\begin{array}{ll}
\text { Example: } & 4 x^{2}+3 x=0 \\
& x(4 x+3)=0 \\
& x=0 \\
& 4 x+3=0 \\
& x=-\frac{3}{4} \\
& 4 x^{2}+3 x=0 \\
& 4\left(x^{2}+\frac{3}{4} x\right)=0 \\
& 4\left(x^{2}+\frac{3}{4} x+\frac{9}{64}-\frac{9}{64}\right)=0 \\
& 4\left(x+\frac{3}{8}\right)^{2}-\frac{36}{64}=0 \\
& \mathrm{~V}=\left(-\frac{3}{8},-\frac{36}{64}\right)=\left(-\frac{3}{8},-\frac{9}{16}\right) \\
& y \text {-int }=0
\end{array}
$$

Example: $\quad \frac{x^{2}}{9}-\frac{x}{3}=2$
$9\left(\frac{x^{2}}{9}-\frac{x}{3}\right)=9(2)$
$x^{2}-3 x=18$
$x^{2}-3 x-18=0$
$(x-6)(x+3)$
$x-6=0$
$x=6$
$x+3=0$
$x=-3$
$x^{2}-3 x-18=0$
$x^{2}-3 x+\frac{9}{4}-\frac{9}{4}-18=0$
$\left(x-\frac{3}{2}\right)^{2}-\frac{9}{4}-\frac{72}{4}=0$
$\left(x-\frac{3}{2}\right)^{2}-\frac{81}{4}=0$
$\mathrm{V}=\left(\frac{3}{2},-\frac{81}{4}\right)$
y-int $=\frac{0}{9} 2 ;(0,-2)$

- There are only 3 possible outcomes

2 distinct real roots

2 equal real roots

- When given the vertex of a parabola, you can find the y-int by substituting the vertex into the quadratic function in place of x

Example: \quad Vertex $=1$
$y=1^{2}-2(1)-8$
$y=1-2-8$
$y=-9$

Quadratic Formula

- The formula is used to determine the x variable for certain conventional methods will not render the correct value

Formula: $\quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

- When given the standard quadratic function; to proove the formula, you must follow a series of steps

Example: Given: $a x^{2}+b x+c=0$

- Complete the square

Example: $\quad a\left(x^{2}+\frac{b}{a} x\right)+c=0$

$$
\begin{aligned}
& a\left(x^{2}+\frac{b}{a} x+\left(\frac{b}{2 a}\right)^{2}-\left(\frac{b}{2 a}\right)^{2}\right)+c=0 a\left(x+\frac{b}{2 a}\right)^{2}-a\left(\frac{b}{2 a}\right)^{2}+c=0 \\
& a\left(x+\frac{b}{2 a}\right)^{2}-a\left(\frac{b^{2}}{4 a^{2}}\right)+c=0 \\
& a\left(x+\frac{b}{2 a}\right)^{2}-\frac{b^{2}}{4 a}+c=0
\end{aligned}
$$

- Isolate x

Example: $\quad a\left(x+\frac{b}{2 a}\right)^{2}=\frac{b^{2}}{4 a}-c$

$$
\begin{aligned}
& \left(x+\frac{b}{2 a}\right)^{2}=\frac{b^{2}}{4 a^{2}}-\frac{c}{a} \\
& x+\frac{b}{2 a}= \pm \sqrt{\frac{b^{2}}{4 a^{2}}-\frac{c}{a}} \\
& x=-\frac{b}{2 a} \pm \sqrt{\frac{b^{2}}{4 a^{2}}-\frac{c}{a}}
\end{aligned}
$$

$$
x=-\frac{b}{2 a} \pm \sqrt{\frac{b^{2}}{4 a^{2}}-\frac{4 a c}{4 a^{2}}}
$$

$$
x=-\frac{b}{2 a} \pm \frac{\sqrt{b^{2}-4 a c}}{\sqrt{4 a^{2}}}
$$

$$
x=-\frac{b}{2 a} \pm \frac{\sqrt{b^{2}-4 a c}}{2 a}
$$

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

- Solving x

$$
\text { Example: } \quad \begin{aligned}
& 8 x^{2}+6 x-9=0 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{-6 \pm \sqrt{6^{2}-4(8)(-9)}}{2(8)} \\
& x=\frac{-6 \pm \sqrt{36^{2}-288}}{16} \\
& x=\frac{-6 \pm \sqrt{324}}{16} \\
& x=\frac{-6 \pm 18}{16} \\
& x=\frac{-3 \pm 9}{8} \\
& x=\frac{-3+9}{8} \\
& x=\frac{6}{8} \\
& x=\frac{3}{4} \\
& x=\frac{-3-9}{8} \\
& x=-\frac{12}{8} \\
& x=-\frac{3}{2}
\end{aligned}
$$

These are rational roots
Example: $\quad x^{2}-3 x-1=0$
$x=\frac{-(-3) \pm \sqrt{(-3)^{2}-4(1)(-1)}}{2(1)}$
$x=\frac{3 \pm \sqrt{13}}{2}$
$x=\frac{3+\sqrt{13}}{2}$
$x=\frac{3-\sqrt{13}}{2}$
These are irrational roots

Example: $\quad x^{2}-2 x+3=0$
$x=\frac{-(-2) \pm \sqrt{(-2)^{2}-4(1)(3)}}{2(1)}$
$x=\frac{2 \pm \sqrt{4-12}}{2}$
$x=\frac{2 \pm \sqrt{-8}}{2}$
There are no real solutions

- There are several possible outcomes

$$
\begin{array}{ll}
\text { Example: } & \text { If } b^{2}-4 a c<0(\text { Negative): No real solutions } \\
& \text { If } b^{2}-4 a c=0: 2 \text { real equal roots (double root) } \\
& \text { If } b^{2}-4 a c=\text { perfect square: } 2 \text { real distinct roots (rational) } \\
& \text { If } b^{2}-4 a c>0(\text { Not a perfect square): } 2 \text { real distinct roots (irrational) }
\end{array}
$$

- When there is 2 variables, remove the x term and leave any other

Example: $\quad x^{2}+2 x y-y^{2}=0$
$x=\frac{-2 y \pm \sqrt{(2 y)^{2}-4(1)\left(-y^{2}\right)}}{2(1)}$
$x=\frac{-2 y \pm \sqrt{4 \mathrm{y}^{2}+4 \mathrm{y}^{2}}}{2}$
$x=\frac{-2 y \pm \sqrt{8 \mathrm{y}^{2}}}{2}$
$x=\frac{-2 y \pm \sqrt{4} \sqrt{2} \sqrt{\mathrm{y}^{2}}}{2}$
$x=\frac{-2 y \pm 2 \sqrt{2} \sqrt{\mathrm{y}^{2}}}{2}$
$x=\frac{2(-\mathrm{y} \pm \sqrt{2} \mathrm{y})}{2}$
$x=-y \pm \sqrt{2} y$

- Determining the minimum and maximum can be done by completing the square of quadratic functions
- Where there is no coefficient, add and subtract the square of half the coefficient of x
- Group the perfect square trinomial
- Simplify the trinomial as a square binomial

$$
\begin{array}{ll}
\text { Example: } & y=x^{2}+12 x-7 \\
& y=x^{2}+12 x+36-36-7 \\
& y=\left(x^{2}+12 x+36\right)-36-7 \\
& y=(x+6)^{2}-43 \\
& \therefore \operatorname{Min}=-43, x=-6
\end{array}
$$

- When given a coefficient next to x, group the containing terms of x
- Factor first to terms only containing x
- Simplify the trinomial as a square binomial

$$
\begin{array}{ll}
\text { Example: } & y=4 x^{2}-24 x+31 \\
& y=\left(4 x^{2}-24 x\right)+31 \\
& y=4\left(x^{2}-6 x+9-9\right)+31 \\
& y=4\left[(x-3)^{2}-9\right]+31 \\
& y=4(x-3)^{2}-36+31 \\
& y=4(x-3)^{2}-5 \\
& \therefore \text { Min }=-5, x=3
\end{array}
$$

- Not all functions have perfect square integers, therefore it may involve fractions

Example: $\quad y=5 x-3 x^{2}$

$$
y=-3 x^{2}+5 x
$$

$$
y=-3\left(x^{2}-\frac{5}{3} x\right)
$$

$$
y=-3\left(x^{2}-\frac{5}{3} x-\frac{25}{36}+\frac{25}{36}\right)
$$

$$
y=-3\left[\left(x-\frac{5}{6}\right)^{2}-\frac{25}{36}\right]
$$

$$
y=-3\left(x-\frac{5}{6}\right)^{2}+\frac{25}{36}
$$

$$
\therefore \operatorname{Max}=\frac{25}{12}, x=\frac{5}{6}
$$

- Solving quadratic equations through factoring

$$
\begin{array}{ll}
\text { Example: } & x^{2}-6 x-27=0 \\
& (x-9)(x+3)=0 \\
& x=9,-3 \\
& \text { Midpoint }=\frac{9+(-3)}{2}=3 \\
& V=3^{2}-6(3)-27 \\
& V=(3,-36)
\end{array}
$$

- Solve by completing the square

$$
\text { Example: } \begin{array}{ll}
& 2 x^{2}-5 x-1=0 \\
& 2\left(x^{2}-\frac{5}{2} x\right)-1=0 \\
& 2\left(x^{2}-\frac{5}{2} x+\frac{25}{16}-\frac{25}{16}\right)-1=0 \\
& 2\left(\left[x-\frac{5}{4}\right]^{2}-\frac{25}{16}\right)-1=0 \\
& 2\left(x-\frac{5}{4}\right)^{2}-\frac{25}{8}-\frac{8}{8}=0 \\
& 2\left(x-\frac{5}{4}\right)^{2}-\frac{33}{8}=0 \\
& 2\left(x-\frac{5}{4}\right)^{2}=\frac{33}{8} \\
& \left(x-\frac{5}{4}\right)^{2}=\frac{33}{16} \\
x-\frac{5}{3}= \pm \sqrt{\frac{33}{16}} \\
& x-\frac{5}{4}=\frac{ \pm \sqrt{33}}{4} \\
x=\frac{ \pm \sqrt{33}}{4}+\frac{5}{4} \\
& x=\frac{ \pm \sqrt{33}+5}{4}
\end{array}
$$

- Solve by quadratic formula

Example: $\quad x^{2}+5 x+3=0$

$$
\begin{aligned}
& x=\frac{-5 \pm \sqrt{5^{2}-4(1)(3)}}{2(1)} \\
& x=\frac{-5 \pm \sqrt{25-12}}{2} \\
& x=\frac{-5 \pm \sqrt{13}}{2}
\end{aligned}
$$

- Applications to quadratic functions

Example: \quad A football is punt into the air. Its height, h, in meters, after t seconds y :
$h=-5 t^{2}+30 t$
$h=-5\left(t^{2}-6 t\right)$
$h=\left(t^{2}+6 t+9-9\right)$
$h=-5(t-3)^{2}+45$
$\therefore \operatorname{Max}=45 \mathrm{~m}$
$0=-5 t^{2}-30 t$
$0=-5 t(t-6)$
$\therefore t=0, t=6$
Example: A CD player sells for $\$ 6000$ Sales average 80 per month. Every $\$ 100$ increase there will be 1 less CD player sold.
Let $x=$ every $\$ 100$ increase
Let $r=$ Revenue
$r=(6000+100 x)(80-x)$
$r=480000+200 x-100 x^{2}$
$r=-100 x^{2}+2000 x+480000$
$r=-100\left(x^{2}+20 x\right)+480000$
$r=-100\left(x^{2}+20 x+100-100\right)+480000$
$\left.r=-100\left[(x-10)^{2}\right)-100\right]+480000$
$r=-100(x-10)^{2}+490000$
\therefore Max revenue $=\$ 490000$

Example: \quad A rectangle lawn, $7 \mathrm{~m} \times 5 \mathrm{~m}$. Uniform boarded of flowers is planted along 2 adjacent sides. If flowers cover $6.25 \mathrm{~m}^{2}$, how wide is boarder.
Let $x=$ width of boarder
$A=41.25 \mathrm{~m}^{2}$
$(5+x)(7+x)=41.25$
$35+12 x+x^{2}=41.25$
$x^{2}+12 x-6.25=0$
$x=\frac{-12 \pm \sqrt{12^{2}-4(-6.25)}}{2}$
$x=\frac{-12 \pm \sqrt{169}}{2}$
$x=\frac{-12 \pm 13}{2}$
$x=-\frac{25}{2}, \frac{1}{2}$
\therefore Border $=0.5 \mathrm{~m}$ wide

- Evaluating for function notation
- $\quad f(x)$ means Function of x
- Used to fine when x equals an integer

Example: $\quad y=2 x^{2}+3 x-4$

$$
f(x)=2 x^{2}+3 x-4
$$

Example:

$$
\begin{aligned}
& f(x)=5 x-2 \\
& f(3)=5(3)=2 \\
& f(3)=13
\end{aligned}
$$

Example: $\quad f(0)=-2$
Example: \quad Find x if $f(x)=4 x+3$

$$
f(x)=8
$$

$$
8=4 x+3
$$

$$
x=\frac{5}{4}
$$

Example: \quad Find x if $f(x)=4 x+3$

$$
\begin{aligned}
& f(x)=0 \\
& 0=4 x+3 \\
& x=-\frac{3}{4}
\end{aligned}
$$

Exponential Functions

- Functions that either have an exponential growth ($a>1$) or exponential decay ($0<a<1$) where c is the initial value, a is the growth or decay factor, and x is the measure of time

Formula: $\quad f(x)=c(a)^{x}$

- Use a table of values to express and graph the formula

Example: Bactereia doubles each hour and you start with 35 cells, how many in 3 hours?
$\therefore f(x)=35(2)^{x}$
$f(3)=35(2)^{3}$
$f(3)=280$
Example: Deer population is 80% of what it was each year and you start with 15000 , how many remin in 12 years?
$\therefore f(x)=15000(0.8)^{x}$
$f(12)=15000(0.8)^{12}$
$f(12)=1030$
Example: $\quad \$ 5200$ doubles every 6 years. Find the growth after 15 years

$$
\therefore f(x)=5200(2)^{x}
$$

$$
x=\frac{15}{6}=2.5
$$

$$
f(15)=5200(2)^{2.5}
$$

$$
f(15)=29415.64
$$

- The domain value (x) will be greater than 0
- The range value (y) will be greater than 0 and in certain cases may have an asympototes of 0

$$
\begin{array}{ll}
\text { Example: } & y=2500(0.25)^{x} \\
& D:\{x \geq 0\} \\
& R:\{y \geq 0 \mid y \neq 0\}
\end{array}
$$

Transformations

Horizontal and vertical translations of functions

- A Translation is when something is shifted or moved
- Can be calculated through 2 additional variables, p and q
- Horizontal translations are determined by q. It is located outside the function expression
- A vertical translation is determined by p. It is located inside the function expression. Also, the value is always opposite its display value
- If either q and p are not present, then it is only a translation on one axis

$$
\begin{array}{ll}
\text { Formula: } & y=f(x \pm p) \pm q \\
\text { Example: } & \begin{array}{l}
\\
\\
\\
\text { Move right } 1, \text { up } 1 \\
\text { Example: }
\end{array} \\
& \begin{array}{l}
x=\frac{1}{x+4}-2 \\
\\
\end{array} \\
\text { Move left } 4, \text { down } 2
\end{array}
$$

- Asymptotes are dotted lines that appear on a graph in a function such as $y=f\left(\frac{1}{x}\right)$. These lines indicate that the function never reaches the asymptotes, in this case, 0

Reflections of functions

- Whichever axis is being reflected, the formula must apply
- For a reflection on the x axis

Formula: $\quad-f(x)$
Example: $\quad f(x)=6 x-1$

$$
\begin{aligned}
& -f(x)=-(6 x-1) \\
& -f(x)=-6 x+1
\end{aligned}
$$

Example: $\quad f(x)=-5 x^{2}+3$

$$
\begin{aligned}
& -f(x)=-\left(-5 x^{2}+3\right) \\
& -f(x)=5 x^{2}-3
\end{aligned}
$$

- For a reflection on the y axis

Formula: $\quad f(-x)$
Example: $\quad f(x)=\sqrt{-x+3}$
$f(-x)=\sqrt{x(-x)+3}$
$f(-x)=\sqrt{x+3}$
Example: $\quad f(x)=(x-4)^{2}$

$$
f(x)=x^{2}-8 x+16
$$

$$
f(-x)=x^{2}+8 x+16
$$

$$
f(-x)=(x+4)^{2}
$$

- An invariant point Is a point that lies on the axis line and does not shift after a reflection

The Inverse of a function

- $\quad x$ and y values are swapped
- When both the original and inverse function are graphed, the hypothetical reflection line is $y=x$
- To find, swap the variables and then solve for y

Formula: $\quad f^{-1}(x)$
Example: $\quad f(x)=3 x+6$
$y=3 x+6$
$x=3 y+6$
$\frac{x-6}{3}=\frac{3 y}{3}$
$y=\frac{x-6}{3}$
$f^{-1}(x)=\frac{x-6}{3}$
The invariant point is $(-3,-3)$
Example: $\quad f(x)=x^{2}-9$

$$
y=x^{2}-9
$$

$$
x=y^{2}-9
$$

$$
x+9=y^{2}
$$

$$
y= \pm \sqrt{x+9}
$$

$$
D_{f}=\{x \in \mathbb{R}\}
$$

$$
R_{f}=\{y \in \mathbb{R} \mid y \geq-9\}
$$

$$
D_{f^{-1}}=\{x \in \mathbb{R} \mid x \geq-9\}
$$

$$
R_{f^{-1}}=\{y \in \mathbb{R}\}
$$

- Not all inverse functions will prove to be a real function, therefore, take the positive end of the function by restricting the domain

$$
\begin{array}{ll}
\text { Example: } & f(x)=(x+5)^{2} \\
& y=(x+5)^{2} \\
& x=(y+5)^{2} \\
& \pm \sqrt{x}=y+5 \\
& y= \pm \sqrt{x}-5 \\
& D_{f}=\{x \in \mathbb{R} \mid x \geq-5\} \\
& R_{f}=\{y \in \mathbb{R} \mid y \geq 0\} \\
& D_{f^{-1}}=\{x \in \mathbb{R} \mid x \geq 0\} \\
& R_{f^{-1}}=\{y \in \mathbb{R} \mid y \geq-5\}
\end{array}
$$

Applications for inverse functions

- When working with alternative variables, there is no need to swap variables, just solve for the isolated term

Example: The cost of renting a car for a day is a flat rate of $\$ 60$ and $\frac{\$ 0.35}{\mathrm{~km}}$
Let $d=\#$ of km
Let $c=\operatorname{cost}$
$y=0.35 x+60$
$f(x)=0.35 x+60$
$c(d)=0.35 d+60$
$d=\frac{c-60}{0.35}$
$D_{f}=\{d \in \mathbb{R} \mid x \geq 0\}$
$R_{f}=\{c \in \mathbb{R} \mid y \geq 60\}$
$D_{f^{-1}}=\{c \in \mathbb{R} \mid x \geq 60\}$
$R_{f^{-1}}=\{d \in \mathbb{R} \mid y \geq 0\}$

Vertical and horizontal stretches of functions

- Recall the effect a in a parabola $y=a x^{2}$
- Vertical expansion: If $a>1$
- Vertical compression: if $0<a<1$
- With vertical stretches, points on the x axis are invariant
- In point (x, y) on $y=f(x)$ becomes $(x, a y)$ on $y=a f(x)$
- Therefore, the domain will remain the same while the range changes based on the multiple

Example: (Each case involves a set of ordered pairs, watch domain)

$$
\begin{aligned}
& \text { Cases: } y=2 f(x), y=f(x), y=\frac{1}{2} f(x) \\
& D_{f(x)}=\{x \in \mathbb{R} \mid-3 \leq x \leq 3\} \\
& R_{f(x)}=\{y \in \mathbb{R} \mid 0 \leq x \leq 4\} \\
& D_{2 f(x)}=\{x \in \mathbb{R} \mid-3 \leq x \leq 3\} \\
& R_{2 f(x)}=\{y \in \mathbb{R} \mid 0 \leq x \leq 8\} \\
& D_{\frac{1}{2} f(x)}=\{x \in \mathbb{R} \mid-3 \leq x \leq 3\} \\
& R_{\frac{1}{2} f(x)}=\{y \in \mathbb{R} \mid 0 \leq x \leq 2\}
\end{aligned}
$$

- Recall the effect of k in a parabola $y=f(k x)$
- Horizontal expansion: If $0<k<1$
- Horizontal compression: if $k>1$
- With horizontal stretches, points on the y axis are invariant
- In point (x, y) on $y=f(x)$ becomes $\left(\frac{x}{k}, y\right)$ on $y=f(k x)$
- Therefore, the range will remain the same while the domain changes based on the multiple

Example: (Each case involves a set of ordered pairs, watch domain)

$$
\begin{aligned}
& \text { Cases: } y=f(2 x), y=f(x), y=f\left(\frac{1}{2} x\right) \\
& D_{f(x)}=\{x \in \mathbb{R} \mid-2 \leq x \leq 4\} \\
& R_{f(x)}=\{y \in \mathbb{R} \mid 0 \leq x \leq 4\} \\
& D_{f(2 x)}=\{x \in \mathbb{R} \mid-1 \leq x \leq 2\} \\
& R_{f(2 x)}=\{y \in \mathbb{R} \mid 0 \leq x \leq 4\} \\
& D_{f\left(\frac{1}{2} x\right)}=\{x \in \mathbb{R} \mid-4 \leq x \leq 8\} \\
& R_{f\left(\frac{1}{2} x\right)}=\{y \in \mathbb{R} \mid 0 \leq x \leq 4\}
\end{aligned}
$$

- When working with a radical function, be aware of the way it is graphed

Example: $\quad y=\sqrt{2 x}$ is the graph of $y=\sqrt{x}$ compressed horizontally by a factor of $\frac{1}{2}$ $y=\sqrt{\frac{1}{2} x}$ is the graph of $y=\sqrt{x}$ expanded horizontally by a factor of 2

- When a function stretches both horizontally and vertically, the stretches can be performed in either order to get the same result

Example: \quad Given $y=f(x), \operatorname{graph} y=3 f\left(\frac{1}{2} x\right)$
The point (x, y) on $y=f(x)$ becomes $\left(\frac{x}{k}, a y\right)$ on $y=a f(k x)$

Combinations of transformations

- When performing combinations of transformations, work in this recommended order:

Expansions and compressions, reflections, and translations

- Describe the transformations of the following functions

Formula: $\quad y=a f[(k(x-p)]+q$
$a=$ Amplitude, compression, vertical stretch factor/size, negative reflects on
$x,(a<0)$
$k=$ Reciprocal of horizontal stretch factor/size, negative reflects on $y,(k<0)$ Period from $\frac{360^{\circ}}{k}$
$p=$ Negative of the horizontal shift (backwards rule)/location

$$
p>0=\operatorname{Right}\left(x \rightarrow-\#^{\circ}\right)
$$

$$
p<0=\operatorname{Left}\left(x \rightarrow+\#^{\circ}\right)
$$

$q=$ Vertical shift/location

$$
\begin{aligned}
& q>0=\mathrm{Up} \\
& q<0=\text { Down }
\end{aligned}
$$

Example: \quad Given $f(x)=-4(x-2)^{2}+3$
Reflect on x axis, translate right 2 and up 3 , expand vertically by a factor of 4
Example:
Given $f(x)=-\left(\frac{2}{x-1}\right)$
Reflect on x axis, translate right 1 , expand vertically by a factor of 2 ;
asymptotes: $x=1, y=0$
Example: \quad Given $g(x)=\sqrt{2 x+8} \rightarrow \sqrt{2(x+4)}$
Translate left 4 , expand vertically by a factor of 2
Example: \quad Given $h(x)=\sqrt{\left(-\frac{1}{2}\right) x+3} \rightarrow \sqrt{-\frac{1}{2}(x-6)}$
Reflect on y axis, translate right 6 , compress vertically by a factor of $\frac{1}{2}$
Example: \quad Given $y=f(3 x)$
Horizontal compression by a factor of $\frac{1}{3}$
Example: \quad Given $y=3 f\left(\frac{1}{2} x\right)$
Vertical expansion by a factor of 3 , horizontal expansion by a factor of 2

Geometry

Linear Measurements

Certain plus 1

- Measure all digits plus one estimated value
- If the measurement is right on the line the last digit is a zero (0)

- If the measurement ends between the readings estimate the last digit (1-9)

Example:

Lines

Notations

- Anchor points or endpoints appear as dots and arrows determine if the line extends in that direction forever

Types

- A line is a straight path of points that extends forever (∞) in both directions

Example:

- A ray is a part of a line that begins at 1 endpoint and extends forever in one direction

Example:

- A line segment is a part of a line and has 2 endpoints

Example:

- The line of symmetry is when a shape can be split in half and share identical/mirroring properties

Example:

Polygons

A polygon or shape 2 dimensional

- A polygon is a 2-dimensional closed figure made up of line segments
- A vertex is where 2 or more edges/endpoints meet. Encloses area of point and creates an angle
- An edge is more like a line segment but the difference is that for a line segment to become an edge, the shape has to be enclosed
- A face can only be formed when a shape enclosed by edges. The insides of the edges is the face

Example:

- Regular polygons are polygons that have all equal sides and angles

Example:

- Regular polygons are given names for the number of sides they have (refer to chart at the end of this section)
- A convex polygon is a polygon that has line segments within the polygon

Example:

- A concave polygon is a polygon that has line segments outside the polygon

Example:

Types of polygons

- Polygons are classified and named by the number of sides it has
- Polygons with 3 sides are classified as triangles
- Polygons with 4 sides are classified as quadrilaterals
- Polygons with more than 4 sides are classified as polygons

Notation

- Sides that share equal properties will sometimes be labelled with a accents (lines, arrows, etc.)
sets of these accents are paired with no less than 2

Regular polygon chart

		Angle (Total)	Angle(Individual) $\mathbf{1 8 0}(\boldsymbol{n}-\mathbf{2)}$
Name	Sides	$\frac{\mathbf{1 8 0} \mathbf{- 2)}}{\boldsymbol{n}}$	
Henagon	Undefined	Undefined	
Digon	1	0°	0°
Triangle	2	180°	60°
Square	3	360°	90°
Pentagon	4	540°	108°
Hexagon	5	720°	120°
Heptagon	6	900°	128.5°
Octagon	7	1080°	135°
Nonagon	8	1260°	140°
Decagon	9	1440°	144°
Hendecagon	10	1620°	147.27°
Dodecagon	11	1800°	150°
Icosagon	12	3240°	162°
Chiliagon	20	179640°	179.64°
Myriagon	1000	1799640°	179.964°
Googolgon	10000	$1.8 \times 10^{102 \circ}$	180°

Perimeter

The perimeter of a figure is the distance around it

- The sum of the length of sides on an object produces its perimeter

Example:

$$
\begin{aligned}
& P=l+w+l+w \\
& P=2 l+2 w \\
& P=5+2+5+2 \\
& P=14 \mathrm{~cm}
\end{aligned}
$$

- When given the total perimeter and there is only 1 missing side, sum up the sides given and subtract it against the total perimeter to find the missing value

Example:

$$
\begin{aligned}
& x=(13.2+10.2+31.4)-P \\
& x=54.8-71 \\
& x=16.2 \mathrm{~cm}
\end{aligned}
$$

- If the figure is a regular polygon, than each side is equal therefore 1 measure is only required
Example:

$$
\begin{aligned}
& P=s \times 5 \\
& P=3 \times 5 \\
& P=15 \mathrm{~cm}
\end{aligned}
$$

- When given an regular polygon and the perimeter and you are asked to find the length of 1 side; simply correspond the name of the polygon to a number and divide the perimeter with the polygon

$$
\begin{array}{ll}
\text { Example: } & \text { Pentagon }(5) ; P=45 \mathrm{~cm} \\
& s=5 \div 45=9
\end{array}
$$

Area

The space inside an object

Rectangles

- To calculate the area of a rectangle, simply multiple the length and width

Formula:

$$
A=l \times w \text { or } l w
$$

- When working with area and units be sure to square the end result by placing it as units squared $\left({ }^{2}\right)$ since the formula works on a 2 dimensional basis

Example:

$$
\begin{aligned}
& A=l w \\
& A=5 \times 3 \\
& A=15 \mathrm{~cm}^{2}
\end{aligned}
$$

- When given the total area and one side; to solve for the missing value simply divide the area to the side given

$$
A=15 \mathrm{~cm}^{2}
$$

5 cm
Example:

$$
\begin{aligned}
& w=A \div l \\
& w=15 \div 5 \\
& A=3 \mathrm{~cm}
\end{aligned}
$$

Squares

- To calculate the area of a square, simply multiple the side given

Formula:

$$
A=s^{2}
$$

Example:

$A=s^{2}$
$A=4^{2}$
$A=16 \mathrm{~cm}^{2}$

- When given the total area and you need to solve for the side value, simply divide the total area by 4

Example:

Parallelogram

- To calculate the area of a parallelogram, simply multiply its base and height

Formula:

$$
A=b \times h \text { or } b h
$$

Example:

$$
\begin{aligned}
A & =b \times h \\
A & =5.5 \times 4.8 \\
A & =26.4 \mathrm{~cm}^{2}
\end{aligned}
$$

- When given the total area and the height or base, to solve for the missing value simply divide the area by the measure given

Example:

$$
\begin{aligned}
& h=A \div b \\
& h=26.4 \div 5.5 \\
& h=4.8 \mathrm{~cm}
\end{aligned}
$$

Triangle

- To calculate the area of a triangle, simply multiply its base and height and divide the sum by 2

Formula:

$$
A=\frac{1}{2} b \times h \text { or } \frac{b h}{2}
$$

Example:

$$
\begin{aligned}
& A=\frac{b h}{2} \\
& A=\frac{7.8 \times 4.5}{2} \\
& A=\frac{35.1}{2} \\
& A=17.55 \mathrm{~cm}^{2}
\end{aligned}
$$

- When given the total area and the height or base, to solve for the missing value simply divide the area by the measure given and double the quotient

Example:

$$
\begin{aligned}
& h=(A \div b) \times 2 \\
& h=(17.55 \div 7.8) \times 2 \\
& h=2.25 \times 2 \\
& h=4.5 \mathrm{~cm}
\end{aligned}
$$

Circle

The only polygon without a vertex or vertices and only 1 edge

- Circumference is the distance around a circle
- Diameter is a line segment that joins 2 parts on a circle and passes through the center; double the radius
- Radius is the distance from the center of the circle to the edge; half of the diameter
- Chord is a line segment that joins any 2 points on the circumference of a circle
- Arc is a section of a circumference of a circle that lies between 2 ends of a chord therefore there are always 2 arcs on a circle on either side of the chord
- Semicircle is half of a whole circle
- Tangent is where the circle meets an edge and follows through perpendicular
- $\mathbf{P i} / \boldsymbol{\pi}$ is the amount of times the diameter can fit around the circumference of a circle. When the diameter is $1, \pi$ is 3.141592654 or 3.14

Diagram

Tangent

Perimeter of a circle

- The perimeter of a circle is also referred to as the circumference
- The distance across a circle through the center of a circle is called the diameter
- To calculate the circumference of a circle, simply multiply π and the circumference

Formula:

$$
P=\pi \times d \text { or } \pi d
$$

Example:

$$
\begin{aligned}
& P=\pi d \\
& P=3.14 \times 2.2 \\
& P=6.908 \mathrm{~cm}
\end{aligned}
$$

- When given the total circumference; to solve the diameter simply divide the perimeter by π

Example:

$$
\begin{aligned}
d & =P \div \pi \\
d & =6.908 \div 3.14 \\
d & =2.2 \mathrm{~cm}
\end{aligned}
$$

Area of a circle

- The distance from the center to the circumference is called the radius
- To calculate the area of a circle, simply multiply π and the radius squared

Formula:

$$
A=\pi r^{2}
$$

Example:

$$
\begin{aligned}
& A=\pi r^{2} \\
& A=3.14 \times 6.3^{2} \\
& A=3.14 \times 39.96 \\
& A=124.6 \mathrm{~cm}^{2}
\end{aligned}
$$

- When given the total area; to solve the radius simply divide the area by π and find the square root of the quotient

Example:

$$
\begin{aligned}
& A=124.6 \mathrm{~cm}^{2} \\
& r=\sqrt{A \div \pi} \\
& r=\sqrt{124.6 \div 3.14} \\
& r=\sqrt{39.96} \\
& r=6.3 \mathrm{~cm}
\end{aligned}
$$

Graphing a circle

- The center of the circle can be represented by a pair of coordinates
- A circle can be represented by this formula

Formula: $\quad x^{2}+y^{2}=r^{2}$
Example: $\quad x^{2}+y^{2}=25$

$$
r^{2}=25
$$

$$
r=5
$$

- Equation of a circle with center (p, q)

Formula:

$$
\begin{array}{ll}
\text { Formula: } & (x-p)^{2}+(y-q)^{2}=r^{2} \\
\text { Example: } & (x-5)^{2}+(y-2)^{2}=25 \\
& \text { Center is }(5,-2)
\end{array}
$$

Area of Composite Figures

A composite figure is when multiple polygons are meshed together to create a new shape

- To find the area of a composite figure you must first divide the figure into regular identifiable shapes and then apply the formula to solve
- Be sure to correspond to your division of area

Example:

$$
\begin{aligned}
& A_{1}=l w \\
& A_{1}=15 \times 4 \\
& A_{1}=60 \mathrm{~cm}^{2} \\
& A_{2}=l w \\
& A_{2}=(12-4) \times(10-3) \\
& A_{2}=8 \times 7 \\
& A_{2}=56 \mathrm{~cm}^{2} \\
& A_{3}=s^{2} \\
& A_{3}=3^{2} \\
& A_{3}=9 \mathrm{~cm}^{2} \\
& A=A_{1}+A_{2}+A_{3} \\
& A=60+56+9 \\
& A=125 \mathrm{~cm}^{2}
\end{aligned}
$$

- Even when working with different polygons, just correspond to the sectors you make

Example:

$$
\begin{aligned}
& A_{1}=\frac{b h}{2} \\
& A_{1}=\frac{3 \times 5}{2} \\
& A_{1}=\frac{15}{2} \\
& A_{1}=7.5 \mathrm{~cm}^{2}
\end{aligned}
$$

$$
A_{2}=l w
$$

$$
A_{2}=15 \times 5
$$

$$
A_{2}=75 \mathrm{~cm}^{2}
$$

$$
A_{3}=\pi r^{2}
$$

$$
A_{3}=3.14 \times(17-15)^{2}
$$

$$
A_{3}=3.14 \times 2^{2}
$$

$$
A_{3}=3.14 \times 4
$$

$$
A_{3}=12.56 \mathrm{~cm}^{2}
$$

$$
A=A_{1}+A_{2}+A_{3}
$$

$$
A=7.5+75+12.56
$$

$$
A=95.06 \mathrm{~cm}^{2}
$$

Angles

Formation

- An angle is formed by either 2 rays of line segments with a common endpoint called a vertex

Example:
Types

- Acute angle: $<90^{\circ}$
- Obtuse angle: $>90^{\circ}$
- Right angle: $=90^{\circ}$
- Straight angle: $=180^{\circ}$
- Reflex angle: $>180^{\circ}$ and $<360^{\circ}$

Certain angles have relationships

- Several types of angle relationships
- A complementary angle is when angles add up to 90°

> Complementary

Formula: $\angle a b d+\angle d b c=90^{\circ}$
Example:

$$
\begin{aligned}
& a+b=90^{\circ} \\
& 60^{\circ}+30^{\circ}=90^{\circ} \\
& a=90^{\circ}-60^{\circ}=30^{\circ}=b \\
& b=90^{\circ}-30^{\circ}=60^{\circ}=a
\end{aligned}
$$

- A supplementary angle is when angles add up to 180°

Supplementary

Formula:

$$
\angle a b d+\angle d b c=180^{\circ}
$$

Example:

$$
\begin{aligned}
& a+b=180^{\circ} \\
& 120^{\circ}+60^{\circ}=180^{\circ} \\
& a=180^{\circ}-120^{\circ}=60^{\circ}=b \\
& b=180^{\circ}-60^{\circ}=120^{\circ}=a
\end{aligned}
$$

- An opposite angle is when angles opposite of each other are equal and all add up to 360°

> Opposite

$\angle a b d=\angle c b e$
$\underbrace{\text { d } 20^{\circ}>160^{\circ}}_{b 160^{\circ}}$

Example:

$$
\begin{aligned}
& a+b+c+d=360^{\circ} \\
& 160^{\circ}+160^{\circ}+20^{\circ}+20^{\circ}=360^{\circ} \\
& a=b ; a+b=320^{\circ} ; 360^{\circ}-320^{\circ}=40^{\circ}=c, d \\
& c=d ; c+d=40^{\circ} ; 40^{\circ} \div 2=20^{\circ}=c, d
\end{aligned}
$$

Transversal means when a line or line segment is crossing 2 or more lines

- When a transversal crosses 2 parallel lines, the alternate angles are equal, the corresponding angles are equal, and the co-interior angles add to 180°

Formula:
$t=$ transversal line

$$
\begin{aligned}
& \angle a=\angle b \\
& \angle b=\angle d \\
& \angle b+\angle c=180^{\circ}
\end{aligned}
$$

- Adjacent means adjoining or next to

Triangles and Angles

Triangles are classified by the measure of their angles and sides

- Triangles classified by angle

Examples:

- Triangles classified by sides

No equal sides
Examples:

3 equal sides

Angles in triangles are related

- Interior angles are angles within/inside of a polygon
- Exterior angles are angles formed on the outside of a geometric shape. By extending one side past the vertex

Example:

a = Interior Angles
b = Exterior Angles

- The sum of the interior angles of a triangle is 180°

- The sum of the exterior angles of a triangle is 360°

- The exterior angle at each vertex of a triangle is equal to the sum of the interior angles at the opposite vertices

- Equiangular is a type of triangle that has all equal angles

Example:

$$
b+b+b=\frac{360^{\circ}}{3}=120^{\circ}
$$

Pythagorean Theorem

The square on the hypotenuse is equal to the sum of the squares on the other two sides

- Only applies to a right angle triangle
- The hypotenuse is always the longest side of the triangle
- To solve, work step by step to solve for the missing length

$$
\left.\right|^{\mathrm{H}} \begin{aligned}
& c \\
& a \\
& a
\end{aligned}
$$

Formula:

$$
\begin{aligned}
& a^{2}+b^{2}=c^{2} \text { or } \\
& \sqrt{a^{2}+b^{2}}=c
\end{aligned}
$$

Example:

$$
\begin{aligned}
& a^{2}+b^{2}=c^{2} c^{2}=a^{2}+b^{2} c^{2}=5^{2}+7^{2} \\
& c^{2}=25+49 \\
& c=\sqrt{74} \\
& c=8.6 \mathrm{~cm}
\end{aligned}
$$

- You can also check your work by confirming the rule that the hypotenuse is the longest side and/or you can plug in your value and eliminate a given length.

Example: $\quad a^{2}+b^{2}=c^{2}$

$$
b^{2}=c^{2}-a^{2} b^{2}=8.6^{2}-5^{2}
$$

$$
b^{2}=74-25
$$

$$
b=\sqrt{49}
$$

$$
b=7 \mathrm{~cm}
$$

- A Pythagorean triple is when $a=3 ; b=4 ; c=5$

Quadrilaterals and Angles

Angles in quadrilaterals are related

- The sum of the interior angles of a quadrilateral is 360°

- The sum of the exterior angles of a quadrilateral is 360°

- Angles in parallelograms are related for opposite angles are equal

Example:

- When given 1 angle in a parallelogram, we can solve the rest of the angles using supplementary angles

Example:

$$
\begin{aligned}
& a=180^{\circ}-50^{\circ} \\
& a=130^{\circ} \\
& b=50^{\circ} \\
& c=130^{\circ}
\end{aligned}
$$

- When given shapes with unassigned variables, it is possible to solve

Example:
Start with the angle with both variables and combine them to equal 180°
$x+3 x-22=180$
$4 x-22+22=180+22$
$\frac{4 x}{4}=\frac{202}{4}$
$x=50.5^{\circ}$

Solve for the rest of the variables
$y=2 x-10$
$y=2(50.5)-10$
$y=101-10$
$y=91 ; 180-91$
$y=89^{\circ} z=x+15$
$z=50.5+15$
$z=65.5^{\circ}$

Since we know that the interior angles of a quadrilateral add up to 360°, combine the other values to find u and w
$360-(3 x-22+2 x-10+x+15)=w$
$360-(6 x-17)=w$
$360-(6(50.5)-17)=w$
$360-(303-17)=w$
$360-286=w$
$w=74^{\circ}$
$u=180-74$
$u=106^{\circ}$

Polygons and Angle Relationships

Angles in and polygon are related

- The sum of the interior angles (SIA) of a regular polygon and its sides, n, can be expressed algebraically (refer to chart at the end of this section)

Formula: $\quad 180(n-2) ; n=$ number of sides
Example: Octagon, find the sum of interior angles (SIA) $\therefore n=8$
$180(8-2)=1080^{\circ}$
\therefore the SIA of an octagon is 1080°

- We can determine how many sides a polygon has when given its SIA

$$
\begin{array}{ll}
\text { Example: } & \text { SIA }=180 \\
& \text { SIA }=180(n-2) \\
& 180=180^{\circ}(n-2) \\
& 180=180^{\circ}(n)+180(-2) \\
& 180=180^{\circ} n-360 \\
& 180+360=180 n-360+360 \\
& \frac{540}{180}=\frac{180 n}{180} \\
& n=3
\end{array}
$$

\therefore the polygon has 3 sides. It is a triangle

- We can determine EACH angle of the regular polygon when given its SIA

$$
\begin{array}{ll}
\text { Example: } & \text { SIA }=140 n \\
& \text { SIA }=180(n-2) \\
& 140 n=180(n-2) \\
& 140 n=180(n)+180(-2) \\
& 140 n=180 n-360 \\
& 140 n-180 n=-360 \\
& \frac{-40 n}{-40}=\frac{-360}{-40} \\
& n=9
\end{array}
$$

\therefore The polygon with interiod angles of 140° has 9 sides

- The sum of the exterior angles of a convex polygon is 360°

Midpoints and Medians

Triangles and midpoints

- Triangles can be broken down into midpoints and medians
- The midpoint is the point that divides a line into 2 equal segments

Example:

$$
\begin{aligned}
& b d=d a \text {, point } d \text { is the midpoint of side } a b c f \\
& \qquad=f a \text { point } f \text { is the midpoint of side } a c d e=\frac{1}{2} b c
\end{aligned}
$$

$\because b c=4 \mathrm{~m}$ then $d e=2 \mathrm{~m} \because d$ and e are midpoints of 2 sides of $\Delta a b c$ The height of $\triangle A B C=$ height of trapezoid decb

Triangles and medians

- The line segment joining a vertex of a triangle to the midpoint of the opposite side
- A bisect is when a line segment cuts the area of a triangle in half by connecting vertex and the opposite midpoint dividing the area into 2 equal parts
- A right bisector is when a line is perpendicular to a line segment and passing through its midpoint

Example:
Area of $\Delta a b d=$ area of $\Delta a d c \because A=\frac{B h}{2} ; B=$ base; h
$=$ HeightMedian cuts $\Delta a b c$ into 2 equal parts. It bisects the area

- A centroid is the point where the medians of a triangle intersect

Example:

- A line segment joining the midpoints of 2 sides of a triangle is parallel to the $3^{\text {rd }}$ side and half as long
- The height of a triangle formed by joining midpoints of 2 sides of a triangle is half the height of the original triangle
- The medians of a triangle bisect its area
- A diagonal is a line segment joining 2 non-adjacent vertices of a polygon

Circumference of a triangle

- The circumference of a triangle is the point of intersection of the perpendicular bisectors of the sides of the triangle
- This point serves as the centroid of a circle which passes through all of the vertices of a triangle

Quadrilaterals and midpoints

- Joining the midpoints of the sides of any quadrilateral produces a parallelogram

Example:

Quadrilaterals and medians

- The diagonals of a parallelogram bisect each other

Example:

Geometric Figures

Polyhedron

- A polyhedron is a 3 dimensional polygon
- A polyhedron has a face called the base
- A polyhedron has line segments where 2 faces meet called an edge
- A polyhedron has points where edges meet called a vertex or vertices

Solids, shells and skeletons

- A solid is a 3 dimensional object whose interior is completely filled

Example:

- A shell is a 3 dimensional object whose interior is completely hollow

Example:

- A skeleton is a representation of the edges of a polyhedron

Example:

- Surface Area is the area on the outer shell

Formula: $\quad A=A_{3}+A_{2}+A_{3} \ldots$

- Volume is the amount of space an object takes up

Formula: $\quad V=b \times h \times w$ or $b w h$

Geometric Figure	Area/Surface Area	Volume
Cylinder	$\begin{aligned} & A_{\text {base }}=\pi r^{2} \\ & A_{\text {lateral surface }}=2 \pi r h \\ & \begin{aligned} A_{\text {total }} & =A_{2 \text { bases }}+A_{\text {lateral surface }} \\ & =2 \pi r^{2}+2 \pi r h \end{aligned} \end{aligned}$	$V=\left(A_{\text {base }}\right)(\text { height })$ $V=\pi r^{2} h$
Sphere	$A=4 \pi r^{2}$	$V=\frac{4}{3} \pi r^{3} \quad$ or $\quad V=\frac{4 \pi r^{3}}{3}$
Cone	$\begin{aligned} & A_{\text {lateral surface }}=\pi r s \\ & \begin{aligned} A_{\text {base }} & =\pi r^{2} \\ A_{\text {total }} & =A_{\text {lateral surface }}+A_{\text {base }} \\ & =\pi r s+\pi r^{2} \end{aligned} \end{aligned}$	$\begin{aligned} & V=\frac{\left(A_{\text {base }}\right)(\text { height })}{3} \\ & V=\frac{1}{3} \pi r^{2} h \quad \text { or } \quad V=\frac{\pi r^{2} h}{3} \end{aligned}$
Squarebased pyramid	$\begin{aligned} & A_{\text {triangle }}=\frac{1}{2} b s \\ & A_{\text {base }} \end{aligned}=b^{2} .$	$V=\frac{\left(A_{\text {base }}\right)(\text { height })}{3}$ $V=\frac{1}{3} b^{2} h \quad \text { or } \quad V=\frac{b^{2} h}{3}$
Rectangular prism	$A=2(w h+l w+l h)$	$V=($ area of base)(height) $V=l w h$
Triangular prism	$\begin{aligned} & A_{\text {base }}=\frac{1}{2} b l \\ & \begin{aligned} A_{\text {rectangles }}=a h+b h+c h \\ \begin{aligned} A_{\text {total }} & =A_{\text {rectangles }}+A_{2 \text { bases }} \\ & =a h+b h+c h+b l \end{aligned} \end{aligned} .=\begin{array}{l} \text { and } \end{array} \end{aligned}$	$V=\left(A_{\text {base }}\right)(\text { height })$ $V=\frac{1}{2} b l h \quad \text { or } \quad V=\frac{b l h}{2}$

Geometric Figure	Perimeter	Area/Surface Area
Rectangle	$P=l+l+w+w$ or $P=2(l+w)$	$A=l w$
Parallelogram	$P=b+b+c+c$ or $P=2(b+c)$	$A=b h$
Triangle	$P=a+b+c$	$A=\frac{b h}{2}$ or $A=\frac{1}{2} b h$
Trapezoid	$P=a+b+c+d$	$A=\frac{(a+b) h}{2}$ or $A=\frac{1}{2}(a+b) h$
Circle	$C=\pi d$ or $C=2 \pi r$	$A=\pi r^{2}$

- Frustum Pyramid

$$
\text { Formula: } \quad \frac{1}{3} h\left(A_{1}+A_{2}+\sqrt{\left(A_{1} \times A_{2}\right)}\right)
$$

Optimization of Measurements

It is possible to find the maximum area with a given perimeter through optimization

- Optimization is the process of finding values that make a given quantity the greatest or least possible
- Maximum means the greatest possible
- Optimizing the area of a rectangle means finding the dimensions of the rectangle with maximum area for a given perimeter
- For a rectangle with a given perimeter, there are dimensions that result in the maximum area
- The dimensions of a rectangle with optimal area depend on the number of sides. If the perimeter is not required on all sides, a greater area can be enclosed

Formula: 4 sides

$$
\text { Length and Width }=\frac{P}{4}
$$

3 sides
Length $=\frac{P}{2}$
Width $=\frac{L}{2}$;

2 sides

Length and Width $=\frac{P}{2}$

Trigonometry

Relations between triangles

Used to find the relations between angles and lengths of triangular shapes

- Ensure that radians are being used
- Congruent means exact
- Similar means shared angles and some side lengths
- There are only 4 cases of congruency

Formula:	side, side, side	SSS
side, angle, side	SAS	
	angle, side, angle	ASA
	hypotenuse, side	HyS

Similar Triangles

- One triangle is similar to another triangle if 2 out of the 3 angles are the same

Example:

- Similar does not indicate that the lengths are equal but if triangles are similar, there are some ratios that result
- AA means angle to angle similarity

Example:

> In $\triangle A B C$ and $\triangle A D E$
> $\angle A B C=\angle A D E$ Authority: Parallel lines (F pattern)
> $\angle A C B=\angle A E D$ Authority: Parallel Lines (F pattern)
> $\angle B A C=\angle D A E$ Authority: Common
> $\therefore \triangle A B C \sim \triangle A D E$ Authority: AA \sim

- Shared similarities

Example:
If $\triangle A B C \sim \triangle D E F$

1. $\angle A=\angle D, \angle B=\angle E, \angle C=\angle F$
2. $\frac{a}{d}=\frac{b}{e}=\frac{c}{f}$
3. $\quad \frac{\operatorname{Area} \triangle A B C}{\operatorname{Area} \triangle D E F}=\frac{a^{2}}{d^{2}}=\frac{b^{2}}{e^{2}}=\frac{c^{2}}{f^{2}}$

- Proofing similarities

Example:
In $\triangle A B C$ and $\triangle A D E$
$\angle A B C=\angle A D E$ (corresponding -F pattern)
$\angle A C B=\angle A E D$ (Corresponding -F pattern)
$\therefore \triangle A B C \sim \triangle A D E$ By the AA similar triangle theorem

- Cross multiply

In $\triangle A B C$ and $\triangle A D E$
$\frac{6}{4}=\frac{6+x}{10}$
$6 \times 10=4(6+x)$
$60=24+4 x$
$60-24=4 x$
$36=4 x$
$\frac{36}{4}=x$
$x=9$

- Ratios of similar triangles and lengths

Example:

$$
\begin{aligned}
& \text { In } \triangle A B C \text { and } \triangle E F G \\
& \angle C B D=\angle F E G \text { given } \\
& \angle D C B=\angle G F E \text { given } \\
& \therefore \triangle A B C \sim \triangle E F G \text { AA } \sim \\
& \frac{5}{4}=\frac{c}{6} \\
& \frac{5 \times 6}{4}=c \\
& \frac{30}{4}=c \\
& 7.5=x \\
& \frac{b}{e}=\frac{d}{g} \\
& \frac{10}{e}=\frac{5}{4} \\
& 10 \times 4=5 \times e \\
& 40=5 \times e \\
& \frac{40}{5}=e \\
& 8=\mathrm{e}
\end{aligned}
$$

Trigonometry Laws

- Applies to a right angle triangle
- Always use degrees for calculations
- A trigonometric ratio is a ratio of the length of 2 sides in a right angled triangle
- Standard triangle layout

Formula:

- A theta is the angle to be found or given

Formula: $\quad \Theta=$ theta

- The opposite is the side not joined by the vertex where the theta is. The adjacent is the side next to the opposite
- These laws define how to find the theta is any position within the triangle

Formula:

$$
\begin{aligned}
& \text { SOH }- \text { CAH }- \text { TOA } \\
& \tan \Theta=\frac{\text { opp }}{\text { adj }} ; \text { Tangent } \\
& \sin \Theta=\frac{\text { opp }}{\text { hyp }} ; \text { Sine } \cos \Theta=\frac{\text { adj }}{\text { hyp }} \text { Cosine }
\end{aligned}
$$

- Angle of elevation is from base line and up
- Angle of depression is from top and down
- Round to 3 decimal places

The tangent ratio

- When given the opposite and/or adjacent and/or theta, 2 of these values when used with the tangent ratio will result in finding the missing value

Formula:

- A 45° angle when placed with the tangent ratio will result in 1

Example: $\quad \tan 45^{\circ}=\frac{7}{7}=1 \leftarrow$ from $\triangle A B C$
$\tan 45^{\circ}=\frac{14}{14}=1 \leftarrow$ from $\triangle D E F$

- To solve, plug in values into their placeholders

Example: A person is standing 27 m from the base of a tree. The angle of elevation to the top is 57°. Find the trees height
$\tan \Theta=\frac{o p p}{a d j}$
$\tan 57=\frac{h}{27}$
$27(\tan (57))=h$
$27 \tan 57^{\circ}=h$
$h=41.576 \mathrm{~m}$

- Using the arctan or the negative of \tan will find the theta

Example: $\quad \tan \theta ; \arctan \theta$ or $\tan ^{-1} \theta$
Example: A sniper is at the top of a 108 m tall building, aiming at a cat that is 81 m from the front door of the building. At what angle of declination must the sniper aim at to get the cat?
$\tan \Theta=\frac{o p p}{a d j}$
$\tan \Theta=\frac{81}{108} \Theta=\tan ^{-1}\left(\frac{81}{108}\right) \Theta=36.86=37^{\circ} 90^{\circ}-\Theta=53^{\circ} \mathrm{z}$
\therefore the angle of depression is 53°
Example: \quad Solve for x
$\tan 13=\frac{71}{x}$
Solution 1
$x \frac{(\tan 13)}{1}=x\left(\frac{71}{x}\right) x(\tan 13)=71$
$x=\frac{71}{\tan 13}$
Solution 2
$\left(\frac{(\tan 13)}{1}\right)^{-1}=\left(\frac{71}{x}\right)^{-1} \frac{1}{\tan 13}=\frac{x}{71} \frac{71}{\tan 13}=x$

The sine ratio

- The ratio does not depend on the size of the triangle, only the size of the angle
- When given the opposite and/or hypotenuse and/or theta, 2 of these values when used with the sine ratio will result in finding the missing value

Formula:
Example: You are looking at the top of the math tower. A statue of Pythagoras is at the top. You are looking up at an angle of 62° and through use of GPS; you know Pythag is 60 m from you.
$\sin 62=\frac{x}{60}$
$60 \sin 62=x$

$$
x=52.97
$$

Example: Solve this triangle

$\sin \theta=\frac{5}{11}$
$\theta=27$
$\angle B=90-27$
$\angle B=63$

Side $A C$ can be found in 3 ways

Pythagorean Theorem
$11^{2}-5^{2}=b^{2}$
$9.8=b$

Trigonometry
$\tan 27=\frac{5}{b}$
$b=\frac{5}{\tan 27}$
$b=9.8$

Trigonometry
$\sin 63=\frac{b}{11}$
$11 \sin 3=b$
$b=9.8$

The \sin law

- The sine law allows you to perform calculations on triangle that are not right angled

Example:

> In $\triangle A B D$
> $\sin B=\frac{h}{c}$
$h=c \sin B$

In $\triangle A C D$
$\sin C=\frac{h}{b}$
$h=b \sin C$
$h=h$
$c \sin B=b \sin C$
$\frac{c \sin B}{b}=\sin C$
$\frac{\sin B}{b}=\frac{\sin C}{c}$
$\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}$
or
$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
Example: $\quad \frac{80}{\sin 66}=\frac{x}{\sin 63}$
$\frac{80 \sin 63}{\sin 66}=x$
$x=78$

The cosine ratio

- When given the adjacent and/or hypotenuse and/or theta, 2 of these values when used with the cosine ratio will result in finding the missing value

Formula:

Example:
find x

$$
\cos 39=\frac{x}{12}
$$

$$
12 \cos 39=x
$$

$$
x=9.33
$$

The cosine law

- Dividing sine and cosine

$$
\begin{aligned}
& \text { Formula: } \quad \begin{aligned}
& \text { ratio }=\frac{\sin \theta}{\cos \theta} \\
&=\frac{\frac{o p p}{a d j}}{\frac{a d j}{h y p}} \\
&=\frac{o p p}{h y p} \times \frac{h y p}{a d j} \\
&=\frac{o p p}{a d j} \\
&=\tan \theta
\end{aligned}
\end{aligned}
$$

Example: $\quad \sin ^{2} \theta-\sin \theta=0$
$(\sin \theta)^{2}-\sin \theta=0$
$\sin \theta(\sin \theta-1)-0$
$\sin \theta=0 ; \theta=0$
$\sin \theta=1 ; \theta=90$
$(\sin 90)^{2}-\sin 90=0$
$(\sin 0)^{2}-\sin 0=0$
Example: $\quad 2(\cos x)^{2}-7 \cos x+3=0$
Compared to
$2 x^{2}-7 x+3=0$
$2(\cos x)^{2}-6 \cos x-\cos x+3=0$
$2 \cos x(\cos x-3)-1(\cos x-3)=0$
$(2 \cos x-1)(\cos x-3)=0$
$2 \cos x-1=0 ; \cos x=\frac{1}{2} ; x=60$
$\cos x-3=0 ; \cos x=3 ; x=$ inadmissable, rejected

In $\triangle A B C$, draw $C D$ perpendicular to $A B, C D$ is the altitude, h, of $\triangle A B C$

$$
\begin{aligned}
& \text { Let } A D=x \\
& \text { In } \triangle A C D b^{2}=h^{2}+x^{2} \\
& B D=c-x \\
& x=\cos A \\
& \bar{b}=b \cos A
\end{aligned}
$$

In $\triangle B C D a^{2}=h^{2}+(c-x)^{2}$ (pythag)
$a^{2}=h^{2}+c^{2}-2 c x+x^{2}$
$a^{2}=h^{2}+x^{2}+c^{2}-2 c x$
but $b^{2}=h^{2}+x^{2}$ and $x=b \cos A$
$a^{2}=c^{2}+b^{2}-2 c b \cos A$
$a^{2}=b^{2}+c^{2}-2 b c \cos A$
$b^{2}=a^{2}+c^{2}-2 a c \cos B$
$c^{2}=a^{2}+b^{2}-2 a b \cos C$
$a^{2}-b^{2}-c^{2}=-2 b c \cos A$
$\frac{\left(a^{2}-b^{2}-c^{2}\right)}{-2 b c}=\cos A$
$-\frac{a^{2}-b^{2}-c^{2}}{2 b c}=\cos A$
$\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$
$\cos B=\frac{a^{2}+c^{2}-b^{2}}{2 a c}$
$\cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}$

Example:

Find x
$a^{2}=b^{2}+c^{2}-2 b c \cos A$
$a^{2}=21^{2}+11^{2}-2(21)(11) \cos 41$
$a^{2}=213.32$
$a=14.6$

Example:
Find $\angle S, \angle R, \angle T$
$\cos S=\frac{\left((12.1)^{2}+(19.8)^{2}-(17.4)^{2}\right)}{2(12.1)(19.8)}$
$\cos S=0.491882626$
$\angle S=60.5$
$\angle=61$
$\cos R=\frac{(12.1)^{2}+(17.4)^{2}-(19.8)^{2}}{2(2.1)(17.4)}$
$\angle R=82$
$\angle T=180-61-82$
$\angle T=37$
Formula: $\quad a^{2}=b^{2}+c^{2}-2 b c \cos a \quad$ or $\quad \cos a=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$
$b^{2}=a^{2}+c^{2}-2 a c \cos b \quad$ or $\quad \cos b=\frac{a^{2}+c^{2}-b^{2}}{2 a c}$
$c^{2}=a^{2}+b^{2}-2 a b \cos c \quad$ or $\quad \cos c=\frac{a^{2}+b^{2}-c^{2}}{2 a b}$

- Graphing quadrants or casts have trigonometry relationships
- There are 4 quadrants when graphing. The quadrants are labelled in counter clockwise order starting at the top right quadrant. Quadrants are also known as the cast

- Trigonometry ratios fall on certain quadrents

Given: $\quad \cos _{-}^{+} ; \sin _{-}^{+} ; \tan _{-}^{+}$
Qudrant 1: All ratios are positive;
Qudrant 2: Sine ratio is positive
Qudrant 3: Tangent ratio is positive
Qudrant 4: Cosine ratio is positive

Working with 2 right triangles

- When given enough information, anything about a triangle can be found through use of tragicomic ratios

Example:

$$
\begin{aligned}
& \tan 43=\frac{b}{27} \\
& 27 \tan 43=b \\
& b=25.18 \\
& \tan 61=\frac{x+b}{27} \\
& \tan 61=\frac{x+27 \tan 43}{27} \\
& 27 \tan 61=x+27 \tan 43 \\
& 27 \tan 61-27 \tan 43=x \\
& x=23.53
\end{aligned}
$$

Example:
In $\triangle A B C$
$\tan 74=\frac{h}{x}$
$x=\frac{h}{\tan 74}$
In $\triangle A B D$
$\tan 26=\frac{h}{100+x}$
$100+x=\frac{h}{\tan 26}$
$x=\frac{h}{\tan 26}-100$
$x=x$
$\frac{h}{\tan 74}=\frac{h}{\tan 26}-100$
$100=\frac{h}{\tan 26}-\frac{h}{\tan 74}$
$100=h\left(\frac{1}{\tan 26}-\frac{1}{\tan 74}\right)$
$\frac{100}{\frac{1}{\tan 26}-\frac{1}{\tan 74}}=h$
$h=5.67$

Example:

$$
\begin{aligned}
& \ln \triangle A D C \\
& \tan 33=\frac{x}{z} \\
& z \tan 33=x \\
& \ln \Delta B C D \\
& \tan 25=\frac{y}{z} \\
& x+y=45 \\
& z \tan 33+z \tan 25=45 \\
& z(\tan 33+\tan 25)=45 \\
& z=\frac{45}{(\tan 33+\tan 25)} \\
& z=40.33
\end{aligned}
$$

Trigonometric ratios greater than right angles

- When given a point on a graph, several items can be determined through trigonometry based on relations
- The relations always begin in the first quadrant (upper-left), this is known as standard position
- The x axis is known as the initial arm, or where the theta begins
- The terminal arm defines the size of the angle
- The vertex is on the origin
- From the point, we can determine the hypotenuse through use of the Pythagorean theorem, then solve the theta through use of $\mathrm{SOH}-\mathrm{CAH}-\mathrm{TOA}$

Example:

$$
\begin{aligned}
& r=\sqrt{6^{2}+8^{2}} \\
& r=10 \\
& \sin \theta=\frac{8}{10} \\
& \cos \theta=\frac{6}{10} \\
& \tan \theta=\frac{8}{6}
\end{aligned}
$$

Formula: $\quad \sin \theta=\frac{y}{r}$ $\cos \theta=\frac{x}{r}$
$\tan \theta=\frac{y}{x}$

- When there is an obtuse angle, there can be 2 possibilities depending on the ratio used

Example: $\quad P(-4,3)$
$r=5$
$\sin \theta=\frac{3}{5} \rightarrow 37$
$\cos \theta=-\frac{4}{5} \rightarrow 143$
$\tan \theta=-\frac{3}{4} \rightarrow-37$
Formula: $\quad \sin \theta=\sin (180-\theta)$
$\cos \theta=-\cos (180-\theta)$
$\tan \theta=-\tan (180-\theta)$

- When given restrictions, the number of possibilities can be reduced

$$
\begin{array}{ll}
\text { Example: } & 90^{\circ} \leq \theta \leq 180^{\circ} \mid \sin \theta=0.8191 \rightarrow 125^{\circ} \\
& 90^{\circ} \leq \theta \leq 180^{\circ} \mid \cos \theta=-0.7431 \rightarrow 138^{\circ} \\
& 0^{\circ} \leq \theta \leq 180^{\circ} \mid \sin \theta=0.9903 \rightarrow 82^{\circ}, 98^{\circ} \\
& 0^{\circ} \leq \theta \leq 180^{\circ} \mid \cos \theta=0.9205 \rightarrow 23^{\circ}
\end{array}
$$

- It is possible to have a negative terminal arm
- When the arm rotates against 0°, the angle becomes negative
- In a case where a positive terminal arm is greater than 360°, it indicates more than 1 revolution, therefore it can be equal to another positive terminal arm, this is called co-terminal angles

Example: $\quad 420^{\circ}$ and 60° are co-terminal

The sine law: ambiguous case

- When 2 sides and the non-included angle of a triangle are given, the triangle may be unique
- With this info, there are 3 cases: there is no triangle, 1 triangle, or 2 triangles based on the measurements
- Cases for when the angle $A<90^{\circ}$; you will be given sides a and b

Example: If $a \geq b$ then there is 1 exact solution
Example: If $a<b$ and,
$a=b \sin A$ and,
$\angle B=90^{\circ}$ then there is 1 exact solution
Example: if $a<b$ and, $a<b \sin A$ then there is no exact solution

Example: If $a<b$ and, $a>b \sin A$ and,
Sine ratios of supplementary angles are equal then there is 2 exact solutions; 1 acute triangle, 1 obtuse triangle

- Cases for when the angle $A>90^{\circ}$; you will be given sides a and b

Example: If $a \leq b$ then there is no exact solution
Example: If $a>b$ then there is 1 exact solution

- The ambiguous case is really just a matter of determining how many solutions are available when you use the sine law

Example: \quad Solve $\triangle A B C$ if $\angle A=19.8^{\circ}, b=25.8, a=10.4$

$$
\begin{aligned}
& \frac{\sin 19.8}{10.4}=\frac{\sin B}{25.8} \\
& \angle B=\sin ^{-1}\left(\frac{25.8 \sin 19.8}{10.4}\right) \\
& \angle B=10.4 \\
& \alpha=180-57.2 \\
& \alpha=122^{\circ}
\end{aligned}
$$

$\triangle A B C$ (acute) $\therefore \angle B=57.2^{\circ}$
$\angle C=180-76.4$
$\angle C=103^{\circ}$
$\frac{c}{\sin 103}=\frac{10.4}{\sin 19.8}$
$c=\frac{10.4 \sin 103}{\sin 19.8}$
$c=29.9$
$\triangle A B C$ (obtuse) $\therefore \angle B=122.8^{\circ}$
$\angle C=180-142.6$
$\angle C=37.4^{\circ}$
$\frac{c}{\sin 37.4}=\frac{10.4}{\sin 19.8}$
$c=\frac{10.4 \sin 37.4}{\sin 19.8}$
$c=18.6$

Radians and Angle Measure

- Angles can be measured in radians and converted from degrees
- One radian is the measure of the angle subtended at the centre of a circle by an arc that is equal in length to the radius of the circle

$$
\begin{array}{ll}
\text { Formula: } & \theta_{1}=1 \text { radian } \\
& \theta_{2}=2 \text { radian } \\
& \theta_{3}=3 \text { radian }
\end{array}
$$

If $\theta_{1}=1$
it can be written as a ratio of $\frac{r}{r}=\theta_{1}$
$\theta_{2}=2=\frac{2 r}{r}$
$\theta_{3}=3=\frac{3 r}{r} \therefore$ (in radians) $\theta=\frac{\text { arc_length }}{r} \rightarrow \theta=\frac{a}{r}$

- In order to compare radians to degrees, we must understand the length of the arc

Formula: $\quad 360^{\circ}$ in a circle
$\theta=\frac{\text { arc_length }}{r}=\frac{2 \pi r}{r}$
$\therefore 360^{\circ}=2 \pi$ radians
$180^{\circ}=\pi$ radians
$\therefore 1^{\circ}=\frac{\pi}{180^{\circ}}$ rad or $1 \mathrm{rad}=\frac{180^{\circ}}{p i}$

- Find the equivalent radian measure for degrees by using the formula
- Remember to reduce

Example: $\quad 50^{\circ}$

$$
\begin{aligned}
& 50\left(\frac{\pi}{180}\right) \\
& \frac{5 \pi}{18}=0.087
\end{aligned}
$$

Example: $\quad 210^{\circ}$
$210\left(\frac{\pi}{180}\right)$
$\frac{7 \pi}{6}=3.6651$
Example: $\quad \frac{3 \pi}{4}$
$\frac{3 \pi}{4}\left(\frac{180}{\pi}\right)=135^{\circ}$
Example: $\quad 4.7$
$4.7\left(\frac{180}{\pi}\right)=269.2901$

Trigonometric ratios of any angle

- Keep quadrants in mind and as to when what ratio is positive in what quadrant. Refer to the acronym CAST (counter-clockwise from quadrant 4)

Formula: $\quad \begin{aligned} & \sin \theta=\frac{y}{r} \\ & \cos \theta=\frac{x}{r} \\ & \tan \theta=\frac{y}{x}\end{aligned}$

- The Pythagorean Theorem shows that the side lengths of a $30^{\circ}\left|60^{\circ}\right| 90^{\circ}$ triangle has the ratio of $1: \sqrt{3}: 2$
- The side lengths of a $45^{\circ}\left|45^{\circ}\right| 90^{\circ}$ triangle has the ratio of $1: 1: \sqrt{2}$
- These special cases of triangles have exact ratios

Formula:

$\boldsymbol{\theta}$ in Degrees	$\boldsymbol{\theta}$ in Radians	$\boldsymbol{\operatorname { s i n }} \boldsymbol{\theta}$	$\boldsymbol{\operatorname { c o s } \boldsymbol { \theta }}$	$\boldsymbol{\operatorname { t a n } \boldsymbol { \theta }}$
30°	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$
45°	$\frac{\pi}{4}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	1
60°	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	
0°	$\frac{\pi}{3}$	0	1	$\sqrt{3}$
90°	0	1	0	0

Formula: $\quad 30^{\circ}\left|60^{\circ}\right| 90^{\circ}$

Formula: $\quad 45^{\circ}\left|45^{\circ}\right| 90^{\circ}$

- Using the ratios, you can make definite of unknown measures

Example: $\quad P(6,8)$

$r=\sqrt{8^{2}+6^{2}}$
$r=10$
$\sin \theta=\frac{8}{10} \rightarrow \frac{4}{5}$
$\cos \theta=\frac{6}{10} \rightarrow \frac{3}{5}$
$\tan \theta=\frac{8}{6} \rightarrow \frac{4}{3}$
$\theta=53.1^{\circ}$
Example: $\quad P(-4,6)$

$r=\sqrt{(-4)^{2}+6^{2}}$
$r=7.2$
$\sin \theta=\frac{6}{7.2}$
$\cos \theta=-\frac{4}{7.2}$
$\tan \theta=-\frac{6}{4}$
$\theta=123.6^{\circ}$

Example: $\quad P(-3,-1)$

$r=\sqrt{(-3)^{2}+(-1)^{2}}$
$r=\sqrt{10}$
$\sin \theta=-\frac{1}{\sqrt{10}}$
$\cos \theta=-\frac{3}{\sqrt{10}}$
$\tan \theta=\frac{1}{3}$
$\theta=198.4^{\circ}$

- When a question is asking for an exact result, it is looking for radicals, an approximate result would be looking for an answer in radians

Example: $\quad \sin 135^{\circ}$

$$
180^{\circ}-135^{\circ}=45^{\circ}
$$

$$
\sin 45^{\circ}=\frac{1}{\sqrt{2}}
$$

$$
\sin 135^{\circ}=\frac{1}{\sqrt{2}}
$$

Example: $\cos 120^{\circ}$

$$
180^{\circ}-120^{\circ}=60^{\circ}
$$

$$
\cos 60^{\circ}=\frac{1}{2}
$$

$$
\cos 120^{\circ}=-\frac{1}{2}
$$

Example: $\quad \tan 225^{\circ}$

$\tan 45^{\circ}=1$
$\tan 225^{\circ}=1$

- Working with a radian value, remember the formula

$$
\begin{array}{ll}
\text { Example: } & \sin \frac{\pi}{4} \\
\qquad & \sin \frac{\pi}{4}\left(\frac{180}{\pi}\right) \sin 45^{\circ}
\end{array}
$$

$$
\sin 45^{\circ}=\frac{1}{\sqrt{2}} \text { or } \sin \frac{\pi}{4}=\frac{1}{\sqrt{2}}
$$

Example: $\quad \cos \frac{\pi}{6}$
$\cos \frac{\pi}{6}\left(\frac{180}{\pi}\right) \cos 30^{\circ}$

$\cos 30^{\circ}=\frac{\sqrt{3}}{2}$ or $\cos \frac{\pi}{6}=\frac{\sqrt{3}}{2}$

- Always check to see if there are 2 possibilities and whether they are negative or positive

Example: $\quad \sin \frac{4 \pi}{3}$
$\sin \frac{4 \pi}{3}\left(\frac{180}{\pi}\right) \sin 240^{\circ}$

$240^{\circ}-180^{\circ}=60^{\circ} \sin 60^{\circ}=\frac{\sqrt{3}}{2}$
$\sin 240^{\circ}=-\frac{\sqrt{3}}{2}$
Example: $\quad \cos \frac{5 \pi}{6}$
$\cos \frac{5 \pi}{6}\left(\frac{180}{\pi}\right) \cos 150^{\circ}$

$$
\begin{aligned}
& 180^{\circ}-150^{\circ}=30^{\circ} \cos 30^{\circ}=\frac{\sqrt{3}}{2} \\
& \cos 150^{\circ}=-\frac{\sqrt{3}}{2}
\end{aligned}
$$

$$
\begin{array}{ll}
\text { Example: } & \tan \frac{5 \pi}{4} \\
& \tan \frac{5 \pi}{4}\left(\frac{180}{\pi}\right) \tan 225^{\circ}
\end{array}
$$

$$
225^{\circ}-180^{\circ}=45^{\circ} \tan 45^{\circ}=1
$$

$$
\tan 225^{\circ}=1
$$

- Theta in standard position $0 \leq \theta \leq 2 \pi$ can solve the exact value of 2 ratios

Example: $\quad \sin \theta=\frac{2}{5}\left[\frac{y}{r}\right]$
$x=\sqrt{5^{2}-2^{2}}$
$x= \pm \sqrt{21}$
Quadrant 1
$\cos \theta=\frac{\sqrt{21}}{5}$
$\tan \theta=\frac{2}{\sqrt{21}}$
Quadrant 2
$\cos \theta=-\frac{\sqrt{21}}{5}$
$\tan \theta=-\frac{2}{\sqrt{21}}$

$$
\begin{array}{ll}
\text { Example: } & \cos \theta=-\frac{1}{5}\left[\frac{x}{r}\right] \\
& y=\sqrt{(-5)^{2}-1^{2}} \\
& y= \pm \sqrt{24} \\
& \text { Quadrant } 2 \\
& \sin \theta=\frac{\sqrt{24}}{5} \\
& \tan \theta=-\frac{\sqrt{24}}{1} \rightarrow-2 \sqrt{6} \\
& \text { Quadrant } 3 \\
& \sin \theta=-\frac{\sqrt{24}}{5} \\
& \tan \theta=\frac{\sqrt{24}}{1} \rightarrow 2 \sqrt{6} \\
& \tan \theta=\frac{3}{7}\left[\frac{y}{x}\right] \\
& r=\sqrt{3^{2}+7^{2}} \\
& r= \pm \sqrt{58} \\
& \text { Quadrant } 1 \\
& \sin \theta=\frac{3}{\sqrt{58}} \\
& \cos \theta=\frac{7}{\sqrt{58}} \\
& \text { Quadrant } 3 \\
& \sin \theta=-\frac{3}{\sqrt{58}} \\
& \cos \theta=-\frac{7}{\sqrt{58}}
\end{array}
$$

Modelling periodic behaviour

- A function is periodic if it has a pattern of y values that repeats is at regular intervals
- A complete pattern is called a cycle. Cycles may begin at any point on a graph
- The horizontal length of a cycle is the period of the function

Example: (Involves a set of ordered pairs)
$(0,4),(8,4)$
$\because y_{1}=y_{2}$
\therefore the period is 8 units

- When given $f(x)$ and a period, it is possible to determine an x value at a specific time

Example: (Involves a set of ordered pairs)
$f(6)=-1$ (From looking at graph)
$f(20)$
\because period is 7
$f(6)=f(6+7)$
$f(6)=f(6+7+7)$
$\therefore f(20)=-1$

- A function f is periodic if there exists a positive number p

Formula: $\quad f(x+p)=f(x)$

- The smallest positive value of p is the period of the function
- The amplitude of the function is half the difference between the max and min of the function

Example: $\quad \operatorname{Max}=3, \operatorname{Min}=-1$
Amplitude $=\frac{1}{2}(3-(-1))$
\therefore the amplitude is 2

- State the domain and range is based on the variables used

Example: $\quad D:\{0 \leq t \leq 12\}$
$R:\{0 \leq d \leq 800\}$

Transformations of trigonometric ratios

- Transformations that apply to algebraic expressions can also apply to functions
- If $a>1$ then $y=\operatorname{asin} x$ and $y=\operatorname{acos} x$ are stretched vertically by a factor of a
- If $0<a<1$ then $y=\operatorname{asin} x$ and $y=\operatorname{acos} x$ are compressed vertically by a factor of a
- If $a<0$ then there is a reflection on the x axis.
- a represents the altitude of the function

$$
\text { Example: } \begin{aligned}
& y=3 \sin x \\
y & =\sin x \\
& y=\frac{1}{3} \sin x
\end{aligned}
$$

- In one cycle of a sine or cosine function, there are 5 identifying points
- $\quad x$ intercept points are considered zero's, the maximum and minimum of the function is determined by the altitude, corresponding to a negative value is below 0

Example: $\quad y=3 \sin x$, period $=2 \pi$

$$
5 \text { key points }=(0,0),\left(\frac{\pi}{2}, 3\right),(\pi, 0),\left(\frac{3 \pi}{2},-3\right),(2 \pi, 0)
$$

- Cosine function begins at the altitude rather than 0

Example: $\quad y=4 \cos x,(0,0), x \geq 0$

$$
\begin{aligned}
& (0,4),\left(\frac{\pi}{2}, 0\right),(\pi, 0),\left(\frac{3 \pi}{2}, 0\right),(2 \pi, 4) \\
& D: 0 \leq x \leq 2 \pi \\
& R:-4 \leq y \leq 4
\end{aligned}
$$

- If $k>1$ then $y=\sin k x$ and $y=\cos k x$ are compressed horizontally by a factor of $\frac{1}{k}$
- If $0<k<1$ then $y=\sin k x$ and $y=\cos k x$ are stretched horizontally by a factor of k
- 360° divided by the period results in horizontal expansion or compression
- The period will be either $\frac{2 \pi}{k}$ or $\frac{360^{\circ}}{k}$

Example: $\quad y=\sin 3 x$, period $=\frac{2 \pi}{3}$

$$
\begin{aligned}
& (0,0),\left(\frac{\pi}{6}, 1\right),\left(\frac{\pi}{3}, 0\right),\left(\frac{\pi}{2},-1\right),\left(\frac{2 \pi}{3}, 0\right) \\
& D: 0 \leq x \leq \frac{2 \pi}{3} \\
& R:-1 \leq y \leq 1
\end{aligned}
$$

- When combining transformations, use the 5 point system to understand how to graph a cycle

$$
\begin{array}{ll}
\text { Example: } & y=3 \cos 2 x, \text { domain }=-\pi \leq x \leq \pi \\
& \text { Amplitude }=3 \\
& \text { Max }=3 \\
& \text { Min }=-3 \\
& \text { Period }=\frac{2 \pi}{2} \rightarrow \pi
\end{array}
$$

$$
(0,3),\left(\frac{\pi}{4}, 1\right),\left(\frac{\pi}{2},-3\right),\left(\frac{3 \pi}{4}, 0\right),(\pi, 3)
$$

- When given a graph and a coordinate, plug in the values and solve

Example: $\quad x=670$, amplitude $=1$
Period $=\frac{2 \pi}{k}$
$670=\frac{2 \pi}{k}$
$k=\frac{2 \pi}{670} \rightarrow \frac{\pi}{335}$
$\therefore y=\sin \left(\frac{\pi x}{335}\right)$
Approximate $=\frac{\pi}{335} \rightarrow 0.009$
$\therefore y=\sin 0.009 x$

- For $y=\operatorname{asin} x$ and $y=\operatorname{acos} x$, the amplitude is $a(a>0)$
- For $y=\sin k x$ and $y=\cos k x$, the period is $\frac{360}{k}(k>0)$

Radians and Degrees

Radians (\boldsymbol{x})	0	$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2 \pi}{3}$	$\frac{5 \pi}{6}$	π	$\frac{7 \pi}{6}$	$\frac{4 \pi}{3}$	$\frac{3 \pi}{2}$	$\frac{5 \pi}{11}$	$\frac{11 \pi}{6}$	2π
Degrees (\boldsymbol{x})	0	30	60	90	120	150	180	210	240	270	300	330	360

Translations of trigonometric ratios

- Translations that apply to algebraic expressions can also apply to functions
- If $c>1$ then $y=\sin x+c$ and $y=\cos x+c$ are translated upward by c units
- If $c<1$ then $y=\sin x+c$ and $y=\cos x+c$ are translated downward by c units
- Proper sequence of combinations is expansions and compressions, reflections, translations

$$
\begin{array}{ll}
\text { Example: } & y=2 \sin x+3 \\
& \text { Amplitude }=2 \\
& \text { Vertical Stretch }=2 \\
& \text { Translate } u p=3 \\
& \text { Period }=2 \pi \\
& D: 0 \leq x \leq 2 \pi \\
& R: 1 \leq y \leq 5
\end{array}
$$

- If $d>0$ then $y=\sin (x-d)$ and $y=\cos (x-d)$ are translated right by d units
- If $d<0$ then $y=\sin (x-d)$ and $y=\cos (x-d)$ are translated left by d units
- Horizontal translations are recognized as phase shift or phase angle

Example: $\quad y=0.5 \cos \left(x+\frac{\pi}{2}\right)$
Amplitude $=0.5$
Vertical compressed $=0.5$
Phase shift left $=\frac{\pi}{2}$
Period $=2 \pi$
D: $-\frac{\pi}{2} \leq x \leq \frac{3 \pi}{2}$
$R:-0.5 \leq y \leq 0.5$

- When you put both translations and transformations for functions, follow the formula

$$
\begin{array}{ll}
\text { Formula: } & y=\operatorname{asin} k(x-d)+c \\
& y=\operatorname{acos} k(x-d)+c \\
\text { Example: } & y=4 \cos \left(\frac{1}{2} x+\frac{\pi}{2}\right)-1,-4 \pi \leq x \leq 4 \pi \\
& y=4 \cos \frac{1}{2}(x+\pi)-1 \\
& \text { Period }=4 \pi \\
& \text { Vertical Expansion: } 4 \\
& \text { Horizontal Expansion: } 2 \\
& \text { Amplitude: } 4 \\
& D=\{-\pi \leq x \leq 3 \pi\} \\
& R=\{-5 \leq y \leq 3\}
\end{array}
$$

Trigonometric identities

- An identity is an equation that is true for all values of the variable on both the left and rights sides of the equation
- There are several identities

$$
\begin{aligned}
& \text { Formula: } \quad \begin{aligned}
\sin \theta & =\frac{\mathrm{y}}{\mathrm{r}} \\
\qquad & \cos \theta=\frac{x}{r} \\
\tan \theta & =\frac{y}{x}
\end{aligned}
\end{aligned}
$$

- Quotient relation (remember to reciprocal and multiply when dividing in dividing)

$$
\begin{array}{ll}
\text { Example: } \quad & \frac{\sin \theta}{\cos \theta}=\frac{\frac{y}{r}}{\frac{x}{r}} \\
& \frac{\sin \theta}{\cos \theta}=\frac{y}{r}\left(\frac{r}{x}\right) \\
& \frac{\sin \theta}{\cos \theta}=\frac{y}{x} \\
& \therefore \frac{\sin \theta}{\cos \theta}=\tan \theta
\end{array}
$$

- Watch for square ratios
- Pythagorean identity

Example: $\quad \sin ^{2} \theta+\cos ^{2} \theta=\left(\frac{y}{r}\right)^{2}+\left(\frac{x}{r}\right)^{2}$

$$
\sin ^{2} \theta+\cos ^{2} \theta=\frac{y^{2}+x^{2}}{r^{2}}=\frac{r^{2}}{r^{2}}
$$

$\therefore \sin ^{2} \theta+\cos ^{2} \theta=1$
$\therefore \sin ^{2} \theta=1-\cos ^{2} \theta$
$\therefore \cos ^{2} \theta=1-\sin ^{2} \theta$

- In order to solve certain identities, you'll need to find common denominators when given and integer of 1
- These 2 identities can prove other identities

Example: $\quad \frac{\sin \theta \cos \theta}{\tan \theta}=1-\sin ^{2} \theta$
$\frac{\sin \theta \cos \theta}{\frac{\sin \theta}{\cos \theta}}=1-\sin ^{2} \theta$
$\sin \theta \cos \theta\left(\frac{\cos \theta}{\sin \theta}\right)=1-\sin ^{2} \theta$
$\cos ^{2} \theta=1-\sin ^{2} \theta$
$1-\sin ^{2} \theta=1-\sin ^{2} \theta$
$\because L S=R S$
\therefore this is an identity
Example: $\quad \frac{\tan ^{2} \theta+1}{\tan ^{2} \theta-1}=\frac{1}{\sin ^{2} \theta-\cos ^{2} \theta}$
$\frac{\left(\left(\frac{\sin ^{2} \theta}{\cos ^{2} \theta}\right)+1\right)}{\left(\left(\frac{\sin ^{2} \theta}{\cos ^{2} \theta}\right)-1\right)}=\frac{1}{\sin ^{2} \theta-\cos ^{2} \theta}$
$\frac{\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\cos ^{2} \theta}}{\frac{\sin ^{2} \theta-\cos ^{2} \theta}{\cos ^{2} \theta}}=\frac{1}{\sin ^{2} \theta-\cos ^{2} \theta}$
$\frac{1}{\cos ^{2} \theta}\left(\frac{\left(\cos ^{2} \theta\right)}{\sin ^{2} \theta-\cos ^{2} \theta}\right)=\frac{1}{\sin ^{2} \theta-\cos ^{2} \theta}$
$\frac{1}{\sin ^{2} \theta-\cos ^{2} \theta}=\frac{1}{\sin ^{2} \theta-\cos ^{2} \theta}$
$\because L S=R S$
\therefore this is an identity
Example: $\quad \sin x+\tan x=\tan x(1+\cos x)$
$\sin x+\frac{\sin x}{\cos x}=\tan x(1+\cos x)$
$\frac{(\sin x \cos x+\sin x)}{\cos x}=\tan x(1+\cos x)$
$\frac{\sin x(\cos x+1)}{\cos x}=\tan x(1+\cos x)$
$\frac{\sin x}{\cos x}(\cos x+1)=\tan x(1+\cos x)$
$\tan x(1+\cos x)=\tan x(1+\cos x) \because L S=R S$
\therefore this is an identity

- Some trigonometric identities are a result of a definition, while others are derived from relationships
- Reciprocal identities are identities based on definitions
- Cosecant (csc), secant (sec), and cotangent (cot), are identity names of certain ratios

Formula: $\quad \csc \theta=\frac{1}{\sin \theta}, \sin \theta \neq 0$

$$
\sec \theta=\frac{1}{\cos \theta}, \cos \theta \neq 0 \cot \theta=\frac{1}{\tan \theta}, \tan \theta \neq 0
$$

- Quotient identities are derived from relationships

$$
\begin{aligned}
& \text { Formula: } \\
& \qquad \begin{aligned}
\tan \theta & =\frac{\sin \theta}{\cos \theta}, \cos \theta \neq 0 \\
\cot \theta & =\frac{\cos \theta}{\sin \theta}, \sin \theta \neq 0
\end{aligned}
\end{aligned}
$$

- Pythagorean identities are derived from relationships

Formula: $\quad \sin ^{2} \theta+\cos ^{2} \theta=1$

$$
\begin{aligned}
& 1+\tan ^{2} \theta=\sec ^{2} \theta \\
& 1+\cot ^{2} \theta=\csc ^{2} \theta
\end{aligned}
$$

- To prove that a given trigonometric equation is an identity, both sides of the equation need to be equal. There are several methods of doing so
- Simplifying the complicated side or manipulating both sides to get the same expression
- Rewriting all trigonometric ratios in term of x, y, and r
- Rewriting all expressions involving tangent and the reciprocal trigonometric ratios in terms of sine and cosine
- Applying the Pythagorean identity where appropriate
- Using a common denominator or factoring as required

Example: $\quad \cot \theta=\frac{\cos \theta}{\sin \theta}$

$$
\frac{1}{\tan \theta}=\frac{\cos \theta}{\sin \theta}
$$

$$
\frac{\frac{1}{\sin \theta}}{\cos \theta}=\frac{\cos \theta}{\sin \theta}
$$

$$
1\left(\frac{\cos \theta}{\sin \theta}\right)=\frac{\cos \theta}{\sin \theta}
$$

$$
\frac{\cos \theta}{\sin \theta}=\frac{\cos \theta}{\sin \theta}
$$

- Keep on watch for alternative ratios that might be represented differently

Example: $\quad 1+\tan ^{2} \theta=\sec ^{2} \theta$

$$
1+\frac{\sin ^{2} \theta}{\cos ^{2} \theta}=\left(\frac{1}{\cos \theta}\right)^{2}
$$

$$
\frac{\cos ^{2} \theta}{\cos ^{2} \theta}+\frac{\sin ^{2} \theta}{\cos ^{2} \theta}=\frac{1}{\cos ^{2} \theta}
$$

$$
\frac{\cos ^{2} \theta+\sin ^{2} \theta}{\cos ^{2} \theta}=\frac{1}{\cos ^{2} \theta}
$$

$$
\frac{1}{\cos ^{2} \theta}=\frac{1}{\cos ^{2} \theta}
$$

Example: $\quad 1+\cos ^{2} \theta=\csc ^{2} \theta$
$1+\frac{1}{\tan ^{2} \theta}=\left(\frac{1}{\sin \theta}\right)^{2}$
$1+\frac{\frac{1}{\sin ^{2} \theta}}{\cos ^{2} \theta}=\frac{1}{\sin ^{2} \theta}$
$\frac{\sin ^{2} \theta}{\sin ^{2} \theta}+\frac{\cos ^{2} \theta}{\sin ^{2} \theta}=\frac{1}{\sin ^{2} \theta}$
$\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\sin ^{2} \theta}=\frac{1}{\sin ^{2} \theta}$
$\frac{1}{\sin ^{2} \theta}=\frac{1}{\sin ^{2} \theta}$
Example: $\quad \tan \theta+\cot \theta=\frac{1}{\sin \theta \cos \theta}$
$\frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\sin \theta}=\frac{1}{\sin \theta \cos \theta}$
$\frac{\sin \theta+\cos \theta}{\sin \theta \cos \theta}=\frac{1}{\sin \theta \cos \theta}$
$\frac{1}{\sin \theta \cos \theta}=\frac{1}{\sin \theta \cos \theta}$

- Recall conjugates, It may be necessary to solve in certain cases

Example: $\quad \frac{\sin x}{1+\cos x}=\csc x-\cot x$
$\frac{\sin x}{1+\cos x}\left(\frac{1-\cos x}{1-\cos x}\right)=\frac{1}{\sin x}-\frac{1}{\tan x}$
$\frac{\sin x(1-\cos x)}{(1+\cos x)(1-\cos x)}=\frac{1}{\sin x}-\frac{\frac{1}{\sin x}}{\cos x}$
$\left(\frac{\sin x(1-\cos x)}{1-\cos ^{2} x}\right)=\frac{1}{\sin x}-\frac{\cos x}{\sin x}$
$\frac{\sin x(1-\cos x)}{\sin ^{2} x}=\frac{1-\cos x}{\sin x}$
$\frac{1-\cos x}{\sin x}=\frac{1-\cos x}{\sin x}$

Advanced Functions

Interval Notation

A relation is a set of ordered pairs. The domain of a relation is the set of first elements in the ordered pair. The range is a set of second elements in the ordered pair. A function is a relation in which each element of the domain is paired with one and only one element of the range (vertical line test).

- Three ways to represent a function
- Numerically; ordered pairs arranged in an x, y table
- Algebraically; expressed as $f(x)$ followed by a domain and range
- Graphically; on a Cartesian graph with plotted points
- Power functions in general are written in the form, $y=x^{n}$ where n is a whole number/integer
- Polynomial functions written with constants and degrees that must be whole numbers

Formula: $\quad y=a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\ldots+a_{1}+a_{0}$

$$
a_{0} \text { is the constant term }
$$ n is the degree of the polynomial (whole number)

Example: $\quad y=6 x^{5}+7 x^{4}-5 x^{3}+3$

$$
\therefore \text { Degree }=5
$$

- A polynomial functions must have whole numbers as degree

Example: $\quad y=6 x^{-5}+7 x^{4}-5 x^{-3}+3$
Example: $\quad y=6 x^{0}$

- New notation recognized as interval notation. Several cases are shown demonstrating the use of square and rounded brackets. Square brackets indicated an equal to and/or greater than/less than. Infinity symbol is used to signify the function continues and are always surrounded by rounded brackets

Example:
Old Notation
$\{x \in \mathbb{R} \mid-3<x<10\}$
$\{x \in \mathbb{R} \mid-3 \leq x \leq 10\}$
$\{x \in \mathbb{R} \mid x>4\}$
$\{x \in \mathbb{R} \mid x \geq 4\}$
$\{x \in \mathbb{R} \mid x \leq 6\}$
$\{x \in \mathbb{R}\}$

Interval notation
$x \in(-3,10)$
$x \in[-3,10]$
$x \in(4, \infty)$
$x \in[4, \infty)$
$x \in(-\infty, 6]$
$x \in(-\infty, \infty)$

Power Functions

Functions that have an identifiable whole number as a degree.

- Power functions have given names associated with their degree

Power Function	Degree		Name
$\boldsymbol{y}=\boldsymbol{a}$	0	Constant	
$\boldsymbol{y}=\boldsymbol{a} \boldsymbol{x}$	1	Linear	
$\boldsymbol{y}=\boldsymbol{a} \boldsymbol{x}^{2}$	2	Quadratic	
$\boldsymbol{y}=\boldsymbol{a} \boldsymbol{x}^{3}$	3	Cubic	
$\boldsymbol{y}=\boldsymbol{a} \boldsymbol{x}^{4}$	4	Quartic	
$\boldsymbol{y}=\boldsymbol{a} \boldsymbol{x}^{5}$	5	Quintic	
$\boldsymbol{y}=\boldsymbol{a} \boldsymbol{x}^{\mathbf{6}}$	6	Degree 6	

- Power functions can relate between odd and even degrees
- End behaviour is if the function's extremities/ends and their location (quadrant wise). It is in the notation of if $y= \pm \infty$ and $x= \pm \infty$

Example: $\quad y=x^{3}$
Left end is down $(x, y=-\infty)$
Right end is up $(x, y=+\infty)$
Extends from quadrant 3 to quadrant 1
Example: $\quad y=x^{4}$
Left end is up ($x=+\infty ; y=-\infty$)
Right end is up $(x, y=+\infty)$
Extends from quadrant 2 to quadrant 1
Example: $\quad y=-3 x^{2}$
Extends from quadrant 3 to quadrant 4
\because of an even exponent, and negative coefficient
Example: $\quad y=-\frac{2}{5} x^{9}$
Extends from quadrant 2 to quadrant 4
\because of an odd exponent, and negative coefficient

Example: $\quad y=2 x$
Extends from quadrant 3 to quadrant 1
\because of an odd exponent, and positive coefficient

- Proper notation for end behaviour is comparing both the x and y endpoints and their quadrants. Expressed as x approcahes; notated by an arrow \rightarrow, infinity

Example: $\quad y=x^{3}$
as $x \rightarrow \infty, y \rightarrow \infty$ (As x approaches infinity, y approaches infinity)
as $x \rightarrow-\infty, y \rightarrow-\infty$ (As x approaches negative infinity, y approaches negative infinity)

Example: $\quad y=-x^{3}-x^{2}+4 x+4$
as $x \rightarrow \infty, y \rightarrow-\infty$
as $x \rightarrow-\infty, y \rightarrow \infty$

- A graph has line symmetry if the graph has a visible x-axis that divides the graph into 2 mirror parts

Example: If $a=x$-axis
$y=x^{2} x=a$
\therefore function has line symmetry

- A graph has point symmetry if the graph has points (a, b) rotated 180° and remains congruent Example: $\quad y=x^{3}$
\therefore function has point symmetry
- Even and odd power functions share identical end behaviour, symmetry methods, domain and range

Feature	$\boldsymbol{y}=\boldsymbol{x}^{\boldsymbol{n}}$, odd	$\boldsymbol{y}=\boldsymbol{x}^{\boldsymbol{n}}$, even
Domain	$x \in(-\infty, \infty)$	$x \in(-\infty, \infty)$
Range	$y \in(-\infty, \infty)$	$y \in[0, \infty)$
Symmetry	Point symmetry	Line symmetry
End Behaviour	$x:-\infty \downarrow,+\infty \uparrow$	$x:-\infty \uparrow,+\infty \uparrow$

- Graphs can have a minimum number of points and a maximum number of points
- Power functions can has a local minimum and a local maximum points that are visible before they extend to infinity
- Power functions can have multiple x-intercepts depending on the function itself
- Roots of a function will also determine the degree
- A root is defined by how many times the function crosses the x-axis or intercepts
- There are 3 kinds of roots
- First root being a real distinct root, whereby the function crosses and clears the x-axis at one point
- Second root being a real equal root, whereby a parabola meets the x-axis
- Third root being an imaginary root, or complex root, whereby a parabola does not meet the x axis
- If the polynomial has a Quintic (5) degree, there will be 5 roots
- From a power function, you can determine its alternate graphical or algebraic form recognizing if it has a positive or negative coefficient, its end behaviours, its local minimum and maximum points, it's x, y-intercepts, and its symmetry method
- Graphically, determine the total number of local minimum and maximum points. Once totalled, it can be determined that the leading degree is 1 higher than the total
- Absolute maximum and minimum refer to the functions infinite end behaviour, not local
- Graphically, depending on the location of its end behaviour, it can be determined whether or not the leading coefficient is positive or negative, and if the degree is odd or even

Has 2 local minimums and 2 local maximums
\because total local points $=4, \therefore$ degree $=4+1=5$ or Quintic, thus an odd degree Positive coefficients with odd degrees extend from quadrant 3 to quadrant 1

Power Functions Summary

Function	Linear	Quadratic	Cubic	Quartic	Quintic
Domain	$x=\epsilon(-\infty, \infty)$				
Range	$y=\epsilon(-\infty, \infty)$	Varies	$x=\epsilon(-\infty, \infty)$	Varies	$x=\epsilon(-\infty, \infty)$
Max \# of \boldsymbol{x} - intercepts Max \# local min/max	1	2	3	4	5

Finite Differences

Finite differences for a polynomial function of degree n (positive integer), the nth differences are equal (or constant), have the same sign as the leading coefficient, and are equal to n factorial. Used typically algebraically or numerically.

- For a positive integer n, the product $n \times(n-1) \times \ldots \times 2 \times 1$ can be expressed as n ! or factorial

Formula: n !
Example: $\quad 5!=5 \times 4 \times 3 \times 2 \times 1$

$$
=120
$$

- Given an algebraic power function, it can be determined which finite difference will be constant by the function's degree

Example: $\quad g(x)=-4 x^{3}+2 x-x+5$
\therefore the 3rd finite difference will be constant

- Given an algebraic power function, it can be determined the value of the constant finite difference by n ! where n is a positive degree multiplied with the leading coefficient
- When referred to the constant, it is referring to the value of the constant finite differences
- Where c is the constant, a is the leading coefficient, and n is the degree of the polynomial

Formula: $\quad c=a(n!)$
Example: $\quad g(x)=-4 x^{3}+2 x-x+5$
$c=-4(3!)$
$c=-4(6)$
$c=-24$

- With finite differences, the value of the constant also has the same sign (\pm) as the leading coefficient of the polynomial

Example: Given a fifth difference of 60 , determine the degree and value of the leading coefficient
\because the 5th difference is constant, the degree of the polynomial is Quintic (5)
$c=a(n!)$
$60=a(5!)$
$\frac{60}{5!}=\frac{a(5!)}{5!}$
$\therefore a=\frac{1}{2}$

- First differences given a table of values or numerically, works on finding the difference that remains constant throughout the table of values. The finite difference that is constant will determine the degree, the value of that finite difference will determine the sign value of the leading coefficient

Example:

\boldsymbol{x}	\boldsymbol{y}	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
-2	-40				
-1	12	$12-(-40)=52$			
0	20	$20-12=8$	$8-52=-44$		
1	26	$26-20=6$	$6-8=-2$	$-2-(-44)=42$	
2	48	$48-26=22$	$22-6=16$	$16-(-2)=18$	$14-42=-24$
3	80	$48-80=32$	$32-22=10$	$10-16=-6$	$-6-18=-24$

\because the 4th difference is constant, the degree of the polynomial is Quartic (4)
\because the constant is negative, (-24), the leading coefficient will be negative
$\therefore a=\frac{-24}{4!}=-1$

Equations and Graphs of Polynomial Functions

By reading a graph, the least possible degree and sign of the function can be determined.

- Functions can come in different forms and not in typical form. This new form identifies the x intercepts by solving each bracketed term. The degree can be determined by using like terms with the x or graphically. Also, the y intercept can be found by zeroing the x values. Leading coefficient can be determined by the product of the x-coefficients. End behaviour is determined by the degree and sign of the leading coefficient.

Example: $\quad y=x(x-3)(x+2)(x+1)$
When $y=0, x=-2,-1,0,3$
Degree is Quartic (4) because the product of the x 's is 4
y-intercept $=(0-3)(0+2)(0+1)=-6$
$a=1 \times 1 \times 1 \times 1=1$
\because degree is Quartic and the function has a positive leading coefficient, the function extends from quadrant 2 to 1

Example: $\quad y=-(2 x+1)^{3}(x-3)$
When $y=0, x=-\frac{1}{2}($ order 3$), 3$
Degree is Quartic (4) because the product of the x 's is 4
y-intercept $=-(2(0)+1)^{3}(0-3)=3$
$a=-1 \times 2^{3} \times 1=-8$
\because degree is Quartic and the function has a negative leading coefficient, the function extends from quadrant 3 to 4

- Intervals can be segmented in a power function. The x-intercepts divide the x-axis into multiple intervals. If $y>0$ then it is positive, otherwise if $y<0$ it is negative. Can be done both algebraically and graphically

Example: $\quad y=x(x-3)(x+2)(x+1)$

Interval	$(-\infty,-2)$	$(-2,-1)$	$(-1,0)$	$(0,3)$	$(3, \infty)$
Sign of $\boldsymbol{f}(\boldsymbol{x})$	+	-	+	-	+

- An order of an x-intercept or root is determined by the x factor with respect to the degree

Example: Determine an equation the polynomial function given a Quartic (4), zeroes at -10 order 2,10 order 2 , and passes through the point $(0,26)$
x Factors: $(x+10)$ order $2,(x-10)$ order 2
$\because y=k(x-a)(x-b)(x-c) \ldots ; y=k(x+10)^{2}(x-10)^{2}$
Substitute $(0,26)$
$26=k(10)^{2}(-10)^{2}$
$\frac{26}{10000}=\frac{10000 k}{10000}$
$k=0.0026$
$\therefore y=0.0026(x+10)^{2}(x-10)^{2}$

- Graphically, an order will appear as a stand alone x^{n}

Example: Given the equation, $y=-(x+4)^{2}(x-1)(x-3)$
Degree $=$ Quartic (4)
$\because y=-1(4)^{2}(-1)(3)$
$=-48$

Odd and Even Functions

Graphically and algebraically indentify symmetry

- Recall that some odd degree power functions have a point of symmetry, and some even degree power functions have a line of symmetry
- Polynomial functions can be classified as an even or odd function
- All even functions have a line of symmetry about the y-axis $(x=0)$
- All odd functions have a point of symmetry about the origin $(0,0)$
- An even function is a mirror image of itself with respect to the y-axis. If $f(x)$ is an even function, then $f(-x)=f(x)$

Example: $\quad f(x)=2 x^{2}-3$
Test: $f(-x)$
$f(-x)=2(-x)^{2}-3$
$f(-x)=2 x^{2}-3$
$\because f(x)=f(-x)$
$\therefore f(x)$ is an even function

- An odd function is rotationally symmetric about the origin. If the graph is rotated 180° about the origin, it does not change. If $f(x)$ is an odd function, then $f(-x)=-f(x)$

Example:

$$
\begin{aligned}
& h(x)=-2 x^{3}+x \\
& \text { Test: } h(-x) \\
& h(-x)=-2(-x)^{3}+(-x) \\
& h(-x)=2 x^{3}-x \\
& \because h(x) \neq h(-x) \\
& \therefore h(x) \text { is not an even function } \\
& \because-h(x)=h(-x) \\
& \therefore h(x) \text { is an odd function }
\end{aligned}
$$

- Neither is also a possibility

Example: $\quad g(x)=-4 x^{2}+3 x-2$
Test: $g(-x)$
$g(-x)=-4(-x)^{2}+3(-x)-2$
$g(-x)=-4 x^{2}-3 x-2$
$\because g(x) \neq g(-x)$, and $-g(x) \neq g(-x)$
\therefore the function is neither an even function nor odd

Transformations of Power Functions

Recall from previous equations, except now functions will have degrees

- Double bars surrounding a term or variable indicates an absolute value, or the positive value only

Example: $\quad g(x)=-2 f[3(x-2)]+1$
$|a|=2$

- Given $y=f(x)$, then $g(x)=a f[k(x-d)]+c$ is a transformed function of $f(x)$

Formula: $\quad g(x)=a f[k(x-d)]+c$
$a<0=$ reflection about the x-axis
$0<|a|<1=$ vertical compression by a factor of a
$|a|>1=$ vertical stretch by a factor of a
$k<0=$ reflection about the y-axis
$0<|k|<1=$ horizontal expansion by a factor of $\frac{1}{k}$
$|k|>1=$ horizontal compression by a factor of $\frac{1}{k}$
$d>0=$ horizontal shift right (fully factored)
$d<0=$ horizontal shift to the left (fully factored)
$c>0=$ vertical shift up
$c<0=$ vertical translation down

- $\quad d$ may already be factored therefore in order to find the true horizontal shift you must factor the term with k (watch the brackets)

Example: $\quad g(x)=-2 f\left[\frac{1}{3} x+1\right]-4$

$$
g(x)=-2 f\left[\frac{1}{3}(x+3)\right]-4
$$

$\therefore d=3$, Shift left by 3

- Given a function, transform the function in the order of stretches, reflections, and translations or SRT
- When $g(x)$ is expected to be rewritten as a full transformation, rewrite it in standard form; or expand the function
- In order to work graphically, get a table of values set up and apply the transformations to a select relation

Example: \quad Given $f(x)=x^{4}$
$g(x)=-2 f\left[\frac{1}{3} x+1\right]-4$
$g(x)=-2 f\left[\frac{1}{3}(x+3)\right]-4$
Describe the transformation: Reflection on x-axis, vertical stretch by a factor of 2 , horizontal expansion by a factor of 3 , shift left by 3 , vertical translation down by 4
Rewrite $g(x)$ (Not standard form)
$g(x)=-2\left(\frac{1}{3} x+1\right)^{4}-4$
Sketch $g(x)$

	$\boldsymbol{f}(\boldsymbol{x})^{\mathbf{4}}$		$\boldsymbol{g}(\boldsymbol{x})=-\mathbf{2 f}\left[\begin{array}{c}\mathbf{1} \boldsymbol{3}+\mathbf{1}]-\mathbf{4} \\ \boldsymbol{x}\end{array}\right.$
\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{x}	\boldsymbol{y}
		$\mathbf{3 x - 3}$	$\mathbf{- 2 y - 4}$
$\mathbf{- 3}$	81	-12	-166
$\mathbf{- 2}$	16	-9	-36
$\mathbf{- 1}$	1	-6	-6
$\mathbf{0}$	0	-3	-4
$\mathbf{1}$	1	0	-6
$\mathbf{2}$	16	3	-36
$\mathbf{3}$	81	6	-166

- Place $g(x)$ into $f(x)$ proportionally

$$
\begin{array}{ll}
\text { Example: } & \text { Given } f(x)=-3(x-1)^{4}+2 \\
& g(x)=2 f(2(x+1))-3 \\
& g(x)=2 f(2 x+2)-3 \\
& f(x)=2\left(-3\left(\frac{1}{2}(2 x+2-1)^{4}+2\right)-3\right. \\
& f(x)=2\left(-3\left(x+\frac{1}{2}\right)^{4}+2\right)-3 \\
& f(x)=-6\left(x+\frac{1}{2}\right)^{4}+1
\end{array}
$$

Polynomial Division

Long division will be needed for this and recognizing the structure of how long division works is key

- Polynomial multiplication is when you expand

$$
\begin{array}{ll}
\text { Example: } & (x-3)\left(x^{2}-2 x+5\right) \\
& x^{3}-2 x^{2}+5 x-3 x^{2}+6 x-15 \\
& x^{3}-5 x^{2}+11 x-15
\end{array}
$$

- Polynomial division can be done by factoring

Example: $\quad \frac{x^{2}-x-12}{x-4}$

$$
\begin{aligned}
& \frac{(x-4)(x+3)}{x-4} \\
& x+3, x \neq 4
\end{aligned}
$$

- Long division has a dividend which is the first term, and a divisor, which is the second term. The quotient is the result of a division expression. The divisor is put up against each digit to see how many times the divisor divides fully into the first digit. The result is placed on top, and value is placed below the corresponding digit. The difference of the value and the first digit are placed below and the second digit is brought down. The processed is repeated.

Example: $\quad 876 \div 7 ; 876$:Dividend, 7:Divisor

\therefore quotient $=125$, Remainder 1
$876=(7 \times 125)+1$

- When working with polynomial division and you can't factor, focus only on x and its degree, see what you can do to x to match the degree of the dividend. When the remainder has a degree less than the divisor, it becomes the actual remainder

Example: $\quad x^{2}-7 x-10 \div x+2$
$\therefore x^{2}-7 x-10=(x+2)(x-9)+8$
Example: $\quad 3 x^{4}-2 x^{3}-7 x+4 \div x^{2}-3 x+1$

$$
\therefore 3 x^{4}-2 x^{3}-7 x+4=\left(x^{2}-3 x+1\right)\left(3 x^{3}+7 x+18\right)+(40 x-14)
$$

- A result in quotient form is when the dividend is physically expressed as a result of dividend over divisor. Then equalling the result form. A corresponding statement to check the division is writing the quotient out fully (product of divisor and quotient summed with the remainder). Verifying the answer means you expand the quotient

Example: $\quad x^{3}+3 x^{2}-2 x+5 \div x+1$

$$
\therefore \frac{x^{3}+3 x^{2}-2 x+5}{x+1}=x^{2}+2 x-4+\left(\frac{9}{x+1}\right) \text { Quotient Form }
$$

$$
x \neq-1\left(x^{2}+2 x-4\right)(x-1)+9 \text { Corresponding Statement }
$$

$$
=x^{3}+x^{2}+2 x^{2}+2 x-4 x-4+9
$$

$$
=x^{3}+3 x^{2}-2 x+5
$$

Example: $\quad 3 x^{4}-4 x^{3}-6 x^{2}+17 x-8 \div 3 x-4$

$$
\therefore \frac{3 x^{4}-4 x^{3}-6 x^{2}+17 x-8}{3 x-4}=x^{3}-2 x+3\left(\frac{4}{3 x-4}\right) \text { Quotient Form }
$$

$$
x \neq \frac{4}{3}\left(x^{3}-2 x+3\right)(3 x-4)+4 \text { Corresponding Statement }
$$

$$
=3 x^{4}-4 x^{3}-6 x^{2}+8 x+6 x-12+4
$$

$$
=3 x^{4}-4 x^{3}-6 x^{2}+17 x-8
$$

- Synthetic division can only be used if the divisor is in the form $(x+c), c \in \mathbb{R}$. Place the x factor aside from the constants of $f(x)$. Place a 0 in missing degrees. Multiply the first constant and the factor and add the resultant to the second constant and so on. The last sum is the remainder and the resultants are the new coefficients starting 1 less degree than the dividend

The Remainder Theorem

When a polynomial $P(x)$ is divided by $(x-b)$, then the remainder is $P(b)$ or when $P(x)$ is divided by $(a x-b)$, then the remainder is $P\left(\frac{b}{a}\right)$

- Polynomial division can be written in a form whereby the remainder is given and other constants can be solved

$$
\begin{array}{ll}
\text { Formula: } & P(x)=D(x) Q(x)+R(x) \\
& D=\text { divisor } \\
& Q=\text { Quotient } \\
& R=\text { Remainder } \\
& \text { or } \\
& \frac{P(x)}{D(x)}=Q(x)+\frac{R(x)}{D(x)}
\end{array}
$$

- When given the divisor, b is the factor of x Therefore $P(b)=r$

Example: $\quad P(x): 2 x^{3}-2 x^{2}-3 x+3 \div x-3$
$b=3$
$2 x^{2}+4 x+9+\frac{30}{x-3}$ Quotient Form
$P(3)=30$

- Formula proof (watch x) expressed algebraically

Formula: $\quad P(x)=D(x) Q(x)+R(x)$
$P(x)=(x-b) Q(x)+R(x)$
$P(b)=(b-b) Q(x)+R(x)$
$P(b)=R(x)$

- The remainder can be determined by subbing in the factor of the divisor into x

Formula: $\quad x^{3}+3 x^{2}-2 x-1 \div x+1$
$\therefore b=-1 ; P(-1)$
$(-1)^{3}+3(-1)^{2}-2(-1)-1=3$

- Determine k

$$
\text { Example: } \begin{aligned}
& P(x)=x^{3}-4 x^{2}+k x-1 \div(2 x-3) ; r=\frac{7}{8} \text {, determine } \\
& \therefore b=\frac{3}{2} ; P\left(\frac{3}{2}\right) \\
& P\left(\frac{3}{2}\right)=\left(\frac{3}{2}\right)^{2}-4\left(\frac{3}{2}\right)^{2}+k\left(\frac{3}{2}\right)-1=\frac{7}{8} \\
& P\left(\frac{3}{2}\right)=\frac{7}{8} \\
& \frac{7}{8}=\frac{27}{8}-4\left(\frac{9}{4}\right)+\frac{3 k}{2}-1 \\
& \frac{7}{8}-\frac{27}{8}=-9+\frac{3 k}{2}-1 \\
& -\frac{5}{2}+10=\frac{3 k}{2} \\
& -\frac{10}{4}+\frac{40}{4}=\frac{3 k}{2} \\
& \frac{40}{4}=\frac{3 k}{2} \\
& 2\left(\frac{40}{4}\right)=2\left(\frac{3 k}{2}\right) \\
& \frac{60}{4}=3 k \\
& 15=3 k \\
& k=5
\end{aligned}
$$

- Substitution or elimination may be required given more of some information and less of another

Example: $\quad P(x)=x^{3}+3 x^{2}-m x+n \div x-5 ; r=15$ when divided by $x-2, r=$ -48 . Determine m, n
$P(5)=15$
$15=(5)^{3}+3(5)^{2}-m(5)+n$
$15=125+75-m(5)+n$
$-185=-m(5)+n$
$P(2)=-48$
$-48=(2)^{3}+3(2)^{2}-m(5)+n$
$-48=8+12-2 m+n$
$-68=-2 m+n$
$-185=-5 m+n$
$-(-68=-2 m+n)$ Elimination
$-117=-3 m$
$\therefore m=39$
$-185=-5(39)+n$
$-185=-195+n$
$\therefore n=10$

The Factor Theorem

States a polynomial $P(x)$ has a factor $(x-b)$, if and only if (iff) $P(b)=0$. Therefore if $r=0$, the divisor is a factor of the dividend. Similarly, a polynomial $P(x)$ has a factor $(a x-b)$, iff $P\left(\frac{b}{a}\right)=0$

- Only using terms

$$
\begin{aligned}
\text { Example: } & 24 \div 6=4 \\
& \therefore 6 \text { is a factor of } 24
\end{aligned}
$$

- Testing a given term can determine if the divisor is a factor of the dividend if $r=0$

Example: \quad Is $(x+2)$ a factor of $f(x)=x^{3}+3 x^{2}+5 x+9$

$$
b=-2
$$

$$
f(b)=(-2)^{3}+3(-2)^{2}+5(-2)+9
$$

$$
r=-8+12-10+9
$$

$$
r=3
$$

$$
\because f(-2) \neq 0, \text { by factor theorem, }(x+2) \text { is not a factor of } f(x)
$$

- In order to properly factor a polynomial, using the remainder and factor theorems you can simplify. Testing a possible factor may result in a remainder of 0

Formula: \quad Factor $f(x)=x^{3}-7 x+6$

$$
\begin{aligned}
& \text { Let } b=-1 \rightarrow f(-1)=12 \therefore b \neq-1 \\
& \text { Let } b=1 \rightarrow f(1)=0 \therefore(x-1) \text { is a possible factor } \\
& x^{3}-7 x+6 \div x-1 \\
& =x^{2}+x-6 \\
& \therefore(x-1)\left(x^{2}+x-6\right) \\
& =(x-1)(x+3)(x-2)
\end{aligned}
$$

Integral and Rational Zero Theorem

If $x=b$ is an integral zero of the polynomial with integral coefficients, then b is a factor of the constant term of the polynomial

- Recognize the constant of the polynomial and find factors that could result in it (positive or negative). These are all possible factors or test values to result in $r=0$

Example: $\quad f(x)=x^{3}-x^{2}-14 x+24$
Constant $=24$
$\therefore b \pm=1,2,3,4,6,8 \ldots$

- Test the possible factors

Example: $\quad f(x)=x^{3}-x^{2}-14 x+24$
Test: Let $b=2$
$f(2)=(2)^{3}-(2)^{2}-14(2)+24$
$f(2)=0 \therefore(x-2)$ is a factor
$x^{3}-x^{2}-14 x+24 \div x-2$
$=x^{2}+x-12$
$\therefore f(x)=(x-2)\left(x^{2}+x-12\right)$
$=(x-2)(x+4)(x-3)$

- If $x=\frac{b}{a}$ is a rational zero of the polynomial $P(x)$ with integral coefficients, then b is a factor of the constant term of the polynomial and a is a factor of the leading coefficient

Example: \quad Factor: $P(x)=6 x^{3}-x^{2}-9 x-10$
$b \pm=1,2,5,10$
$a \pm=1,2,3,6$
Test: $\frac{b}{a} \pm=1, \frac{1}{2}, \frac{1}{3}, \frac{1}{6}, 2, \frac{2}{3} \ldots$
$P\left(\frac{5}{3}\right)=0 \therefore(3 x-5)$ is a factor
$2 x^{2}+3 x+2 \div 3 x-5$
$=2 x^{2}+3 x+2$
$\therefore f(x)=(3 x-5)\left(2 x^{2}+3 x+2\right)$
Cannot further factor

Families of Polynomial Functions

A family of functions is a set of functions that have the same zeros or x-intercepts but have different y intercepts (unless zero is one of the x-intercepts)

- An equation for the family of polynomial functions with zeros a_{n}

Formula: $\quad y=k\left(x-a_{1}\right)\left(x-a_{2}\right)\left(x-a_{3}\right) \ldots\left(x-a_{n}\right)$

$$
k \in \mathbb{R}, k \neq 0
$$

- Given the degree and zeroes of a family, equations for the function can be determined by getting the factor of the zeroes and alternative members of the families can be discovered by subbing in a value for k.
- In order to find a member whose graph passes through a given point, substitute the values into the original equation and solve for k
- Represent a family of functions algebraically

Example: Zeroes of a family of a quadratic function are 2 and -3
\because factors are $(x-2)$ and $(x+3)$
$\therefore y=k(x-2)(x+3)$
Let $k=8 ; y=8(x-2)(x+3)$; an family member
Find a member whose points pass through (1,4)
$4=k(1-2)(1+3)$
$4=k(-1)(4)$
$4=-4 k$
$k=-1$
$\therefore y=-(x-2)(x+3)$

- The y-intercept can be treated as another point, therefore substitute x as 0 and the y value correspondingly

Example: Zeroes of a family of a cubic function are $-2,1$ and 3
$\therefore y=k(x+2)(x-1)(x-3)$
Find a member whose points y-intercept $=-15$
$-15=k(0+2)(0-1)(0-3)$
$k=-2.5$
$\therefore y=-2.5(x+2)(x-1)(x-3)$

- When working with irrational zeroes, recall difference of squares: $(a-b)(a+b)=a^{2}-b^{2}$

Example: \quad Zeroes of a family of a quartic function are $1,-1,2+\sqrt{3}$ and $2-\sqrt{3}$

$$
\begin{aligned}
& \therefore y=k(x-1)(x+1)(x-2-\sqrt{3})(x-2+\sqrt{3}) \\
& =k(x-1)(x+1)[(x-2)-\sqrt{3}][(x-2)+\sqrt{3}] \\
& =k\left(x^{2}-1\right)\left[(x-2)^{2}-(\sqrt{3})^{2}\right] \\
& =k\left(x^{2}-1\right)\left(x^{2}-4 x+4-3\right) \\
& =k\left(x^{2}-1\right)\left(x^{2}-4 x+1\right) \\
& =k\left(x^{4}-4 x^{3}+x^{2}-x^{2}+4 x-1\right) \\
& =k\left(x^{4}-4 x^{3}+4 x-1\right)
\end{aligned}
$$

Solving Polynomial Equations

Recall how the degree effects the number and kinds roots a polynomial functions have.

- Recall factoring and solving for x

Example: $\quad 5 x+4=0$

$$
5 x=-4
$$

$$
x=-\frac{4}{5}
$$

Example: $\quad x^{2}-x-12=0$
$(x-4)(x+3)=0$
$\therefore x=4,-3$

- Quadratic equation can be used to solve polynomials that can't be factored in order to find roots or imaginary roots
- Recall common factoring

$$
\begin{array}{ll}
\text { Example: } & x^{3}-4 x^{2}-12 x=0 \\
& x\left(x^{2}-4 x-12\right)=0 \\
& x(x-6)(x+2)=0 \\
& \therefore x=0,6,-2
\end{array}
$$

- The factor theorem and integral zero theorem can be applied as well

Example: $\quad x^{3}-3 x^{2}-4 x+12=0$
Let $P(x)=x^{3}-3 x^{2}-4 x+12$
Test: $P(b) \pm=1,2,3,4,6,12$
$P(2)=0$
$\therefore(x-2)$ is a factor of $\mathrm{P}(\mathrm{x})$; Then divide to fully factor
or
Factor by grouping
$\left(x^{3}-3 x^{2}\right)-(4 x-12)=0$
$x^{2}(x-3)-4(x-3)=0$
$\left(x^{2}-4\right)(x-3)=0$
$(x-3)(x-2)(x+2)=0$
$\therefore x=3, \pm 2$

- Difference of cubes

Formula: $\quad a^{3}-b^{3}=(a-b)\left(a^{2}-a b+b^{2}\right)$
Example: $\quad x^{3}-27$

$$
\begin{aligned}
& (x)^{3}-(3)^{3} \\
& (x-3)\left(x^{2}-3 x+9\right)
\end{aligned}
$$

- Sum of cubes

Formula: $\quad a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)$
Example: $\quad 64 x^{3}-81$
$(4 x)^{3}+(\sqrt[3]{81})^{3}$
$(4 x+\sqrt[3]{81})\left(16 x^{2}-4 \sqrt[3]{81} x+81^{\frac{3}{2}}\right)$
Alternative forms: $81^{\frac{3}{2}}=(\sqrt[3]{81})^{2}=\left(81^{\frac{1}{3}}\right)^{2}$

- Factor sum of cubes

Example:

$$
\begin{aligned}
& x^{3}+1=0 \\
& (x+1)\left(x^{2}-x+1\right)=0 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{1 \pm \sqrt{(-1)^{2}-4(1)(1)}}{2 a} \\
& x=\frac{1 \pm \sqrt{-3}}{2} \\
& x=\frac{1 \pm i \sqrt{3}}{2} \\
& x=-1, \frac{1 \pm i \sqrt{3}}{2}
\end{aligned}
$$

- Factor sum of cubes

$$
\begin{array}{ll}
\text { Example: } & 6 x^{3}-13 x^{2}+x+2=0 \\
& \text { Let } P(x)=6 x^{3}-13 x^{2}+x+2 \\
& b \pm=1,2 \\
& a \pm=1,2,3,6 \\
& \text { Test: } P\left(\frac{b}{a}\right), P(2)=0 \\
& \therefore P(x) \div(x-2) \\
& \text { Let } f(x)=6 x^{2}-x-1 \\
& 6 x^{3}-13 x^{2}+x+2=0 \\
& (x-2)\left(6 x^{2}-x-1\right)=0 \\
& (x-2)(2 x-1)(3 x+1)=0 \\
& \therefore x=2, \frac{1}{2},-\frac{1}{3}
\end{array}
$$

Polynomial Inequalities

Recognizing polynomial intervals and when $y<>0$. Can be done both graphically and algebraically.

- A change in direction can be identified at local minimum and maximum points. Plugging in values will help you graph a polynomial function

Example: $\quad f(x)=(x+2)(x-2)(x-1)$
$\therefore x=-2,2,1$
$f(0)=(0+2)(0-2)(0-1)$
$\therefore y=4$
$f(1.5)=-0.875$ Change in direction
$f(-1)=6$ Change in direction
$f(-3)=-20$ Visible left most point
$f(3)=10$ Visible right most point
$x \in(-\infty,-2), f(x)<0$
$x \in(-2,1), f(x)>0 x \in(1,2), f(x)<0 x \in(2, \infty), f(x)>0$

- Solving a linear inequality. Treat the $<,>$ signs as $=$ signs and solve for x. A change in direction occurs when multiplying or dividing by a negative such of that in the last step of the example. The inequality can also be represented on a number line

Example:

$$
\begin{aligned}
& 5-2 x<8 \\
& -2 x<3 \\
& x>-\frac{3}{2}
\end{aligned}
$$

- Solve a quadratic inequality. When multiplying 2 factors to get a positive result $(f(x)>0)$, their signs must be the same, therefore both positive or both negative. Determine the intervals where each factor is positive or negative. Find the zeroes, set-up intervals, and then test each value

Example: $\quad(x+2)(x-1)>0$

Interval	$(-\infty,-2)$	$(-2,1)$	$(1, \infty)$
$(\boldsymbol{x}+2)$	-	+	+
$(\boldsymbol{x}-\mathbf{1})$	-	-	+
Sign of $\boldsymbol{f}(\boldsymbol{x})$	+	-	+

$$
\therefore x \in(-\infty,-2) \cup(1, \infty)
$$

- Solve a polynomial inequality

Example: $\quad x^{3}-5 x^{2}+2 x+8 \leq 0$

Interval	$(-\infty,-1)$	$(-1,2)$	$(2,4)$	$(4, \infty)$
$(\boldsymbol{x}+\mathbf{1})$	-	+	+	+
$(\boldsymbol{x}-\mathbf{2})$	-	-	+	+
$(\boldsymbol{x}-\mathbf{4})$	-	-	-	+
Sign of $\boldsymbol{f}(\boldsymbol{x})$	-	+	-	+

$$
\therefore x \in(-\infty,-1] \cup[2,4]
$$

- Solve a polynomial inequality graphically

Example: $\quad 2 x^{3}-3 x^{2}-9 x+5<0$
$x \cong-1.79,0.5,2.79$
$\therefore x \in(-\infty,-1.79) \cup(0.5,2.79)$
Example: $\quad x^{3}-5 x+4 \geq 0$
$x \cong-2.56,1.56$
$\therefore x \in[-2.56, \infty)$

Rational Functions

A rational functions has the form $h(x)=\frac{f(x)}{g(x)}$ where $f(x)$ and $g(x)$ are polynomials

- Domain of a rational function are all real numbers except for when $g(x)=0$
- The zeroes of $h(x)$ are equal to $f(x)$

Example: $\quad h(x)=\frac{x}{x-4}$
$x \in(-\infty, 4) \cup(4, \infty)$
$x=0$ (numerator)

- Vertical asymptotes (V.A.) can be found by setting x so that the denominator results in 0
- Horizontal asymptotes (H.A.) found by charting large values of x approaching y

Example: $\quad f(x)=\frac{2}{x+2}$
Domain: $x \in(-\infty,-2) \cup(-2, \infty)$
Zeroes: $2 \neq 0$; \therefore no zeroes
V.A: $x=-2$
H.A Set up a table where $x \rightarrow \pm \infty$, and see where y is approaching H.A: $y \rightarrow 0.0007$

- Simplify when possible but refer to the original function for key features

Example: $\quad f(x)=\frac{x-2}{x^{2}-2 x}=\frac{x-2}{x(x-2)}=\frac{1}{x}$
$x \in(-\infty, 0) \cup(0,2) \cup(2, \infty)$
$1 \neq 0 ; \therefore$ no zeroes
V.A: $x=0$
H.A: $y \rightarrow 0$ (Test Values)

$\boldsymbol{x} \rightarrow \mathbf{- \infty}$	y	$x \rightarrow \infty$	y
$\mathbf{- 1 0 0}$	-0.01	100	0.01
$\mathbf{- 1 0 0 0}$	-0.001	1000	0.001
$\mathbf{- 1 0 0 0 0}$	-0.0001	10000	0.0001

- To express the end behaviour of a rational function, use the notation of x approaching the vertical asymptote from both the left $-\infty$, and the right ∞. Use small test values to determine positive or negative infinity values. To express left, a^{-}and right, a^{+}. This meaning as it gets closer to the vertical asymptote, what is happening to y

Example: $\quad f(x)=-\frac{3}{x-1}$

$$
\text { V.A: } x=1
$$

$\boldsymbol{x} \rightarrow \mathbf{1}^{-}$	y	$x \rightarrow 1^{+}$	y
$\mathbf{0 . 9}$	30	1.1	-30
$\mathbf{0 . 9 9}$	300	1.01	-300
$\mathbf{0 . 9 9 9}$	3000	1.001	-3000

$$
\begin{aligned}
& \text { as } x \rightarrow 1^{-}, y \rightarrow \infty \\
& \text { as } x \rightarrow 1^{+}, y \rightarrow-\infty
\end{aligned}
$$

- The graph of a rational function has at least one asymptote, which maybe vertical, horizontal, or oblique
- An oblique asymptote is neither vertical or horizontal
- The graph of a rational function never crosses a vertical asymptote but it may/may not cross a horizontal asymptote
- The reciprocal of a linear function has the form $f(x)=\frac{1}{k x-c}$
- The restriction on the domain of a reciprocal linear function can be determined by finding the value of x that makes the denominator equal to zero, that is, $x=\frac{c}{k}$
- The vertical asymptote of a reciprocal linear function has an equation of the form $x=\frac{c}{k}$
- The horizontal asymptote of a reciprocal linear function has the equation $y=0$
- If $k>0$, the left branch of a reciprocal linear function has a negative, decreasing slope, and the right branch has a negative, increasing slope
- If $k>0$, the left branch of a reciprocal linear function has a positive, increasing slope, and the right branch has a positive, decreasing slope
- Reciprocal of a quadratic function has a degree of 2
- Key features include: domain, x-intercepts, \boldsymbol{y}-intercept, vertical asymptotes, end behaviour, and horizontal asymptotes
- Simplify where possible

Example: $\quad f(x)=\frac{3}{x^{2}-4}=\frac{3}{(x-2)(x+2)}$
$\mathrm{D}: x \in(-\infty,-2) \cup(-2,2) \cup(2, \infty)$
x-intercepts: $y=0 ; 0=\frac{3}{x^{2}-4} \because 3 \neq 0 \therefore$ none
y-intercepts: $x=0 ; f(0)=\frac{3}{0^{2}-4} ; y=-\frac{3}{4}$ or -0.75
V.A: $x= \pm 2$ End Behaviour:

End behaviour for $\boldsymbol{x}=\mathbf{2}$				End behaviour for $\boldsymbol{x}=-\mathbf{2}$			
$\boldsymbol{x} \boldsymbol{\rightarrow} \mathbf{2}^{-}$	y	$x \rightarrow 2^{+}$	y	$x \rightarrow-2^{-}$	y	$x \rightarrow-2^{+}$	y
$\mathbf{1 . 9}$	-7.69	2.1	7.31	-2.1	7.31	-1.9	-7.69
$\mathbf{1 . 9 9}$	-75.19	2.01	74.81	-2.01	74.8	-1.99	-75.19
$\mathbf{1 . 9 9 9}$	-750	2.001	748	-2.001	749	-1.999	-750

as $x \rightarrow 2^{-}, y \rightarrow-\infty$
as $x \rightarrow 2^{+}, y \rightarrow \infty$
as $x \rightarrow-2^{-}, y \rightarrow \infty$
as $x \rightarrow-2^{+}, y \rightarrow-\infty$
H.A:(Numerically, sub in large values of x)

$\boldsymbol{x} \rightarrow-\infty$	y	$x \rightarrow \infty$	y
$\mathbf{- 1 0 0}$	0	100	0
$\mathbf{- 1 0 0 0}$	0	1000	0
$\mathbf{- 1 0 0 0 0}$	0	10000	0

H.A: $y=0$

- Vertical asymptotes are always dealt with the denominator
- Horizontal asymptotes are dealt by using large values of x to see the value y approaches
- The zeroes are determined by the numerator

Example: $\quad f(x)=\frac{2 x-7}{5 x+3}$
$x \in\left(-\infty,-\frac{3}{5}\right) \cup\left(-\frac{3}{5}, \infty\right)$
$-\frac{7}{2} \neq 0 ; \therefore$ no zeroes
V.A: $x=-\frac{3}{5}$
H.A: $y \rightarrow 0.4$ (Test Values, Numerically)

$\boldsymbol{x} \rightarrow \mathbf{- \infty}$	y	$x \rightarrow \infty$	y
$\mathbf{- 1 0 0}$	0.416	100	0.383
$\mathbf{- 1 0 0 0}$	0.401	1000	0.398
$\mathbf{- 1 0 0 0 0}$	0.400	10000	0.0399

- The horizontal asymptote can be determined algebraically recognizing that given $y=\frac{1}{x}$, as $x \rightarrow \pm \infty, y \rightarrow 0$. Divide each term with x^{n} (highest degree)

Example: $\quad f(x)=\frac{2 x-7}{5 x+3}$
$y=\left(\frac{\frac{2 x}{x}-\frac{7}{x}}{\frac{5 x}{x}+\frac{3}{x}}\right)=\frac{2-\frac{7}{x}}{5+\frac{3}{x}} ;$ as $x \rightarrow \pm \infty, y \rightarrow \frac{2-\frac{7}{x}}{5+\frac{3}{x}} \approx \frac{2}{5}=0.4$
The result is equal to the previous example

- Oblique asymptotes or linear asymptotes occur in rational functions when the degree of the numerator is greater by 1 than the degree of the denominator
- To determine the equation of the oblique asymptote, use long division. The quotient will be the oblique asymptote

$$
\begin{array}{ll}
\text { Example: } & f(x)=\frac{\left(2 x^{3}-x^{2}+3\right)}{x^{2}} \\
& \text { V.A: } x=0 \\
& \therefore f(x)=(2 x-1)+\frac{3}{x^{2}} \text { (result of long division, } 3 \text { is the remainder) } \\
& \text { as } x \rightarrow \pm \infty, f(x) \rightarrow 2 x-1 \\
& \therefore \text { O.A: } y=2 x-1
\end{array}
$$

Solving Rational Equations

Solve for x-intercepts

- Solve through algebraically by factoring or quadratic equation

Example: $\quad \frac{x}{2 x-8}=3$
$\frac{x}{2 x-8}=\frac{3}{1}$
$x=3(2 x-8)$
$x=6 x-24$
$5 x=24$
$\therefore x=\frac{24}{5}$
Example: $\quad-\frac{4}{x-1}=\frac{7}{2-x}+\frac{3}{x+1}$
$-\frac{4}{x-1}=\frac{7(x+1)+3(2-x)}{(2-x)(x+1)}$
$-\frac{4}{x-1}=\frac{7 x+7+6-3 x}{2 x+2-x^{2}-x}$
$-\frac{4}{x-1}=\frac{4 x+13}{x^{2}+x+2}$
$-4\left(-x^{2}+x+2\right)=(x-1)(4 x+13)$
$4 x^{2}-4 x-8=4 x^{2}+13 x-4 x-13$
$-4 x-8=9 x-13$
$-13 x=-5$
$\therefore x=\frac{5}{13}$
Example: $\quad \frac{1}{x^{2}-2 x-7}=1$
$1=x^{2}-2 x-7$
$x^{2}-2 x-8=0$
$(x-4)(x+2)=0$
$\therefore x=4,-2$

Solving Rational Inequalities

Similar to solving polynomial inequalities. Numerator of a rational inequality are the x-intercepts and denominators are the restrictions or asymptotes.

- Zeroes are found from the numerators and the undefined points are found from the denominator. From these values, you receive the intervals, then find the sign of $f(x)$ at each interval

Example: $\quad \frac{x^{2}+3 x+2}{x^{2}-16} \geq 0$
$\frac{(x+2)(x+1)}{(x+4)(x-4)} \geq 0$
Numerator (Zeroes): $x=-2,-1$
Denominator (Undefined): $x=-4,4$
Intervals: $(-\infty,-4),(-4,-2),(-2,-1),(-1,4),(4, \infty)$

Interval	$(-\infty,-4)$	$(-4,-2)$	$(-2,-1)$	$(-1,4)$	$(4, \infty)$
$(\boldsymbol{x}+1)$	-	-	-	+	+
$(\boldsymbol{x}+2)$	-	-	+	+	+
$(\boldsymbol{x}+\mathbf{4})$	-	-	+	+	+
$(\boldsymbol{x}-\mathbf{4})$	-	-	+	+	+
Sign of $\boldsymbol{f}(\boldsymbol{x})$	+				
	$x \in(-\infty,-4) \cup[-2,-1] \cup(4, \infty)$				

Example: $\quad \frac{2 x^{2}+4 x-30}{\left(x^{2}+5\right)\left(x^{2}-4 x+4\right)}<0$
$\frac{2(x+5)(x-3)}{\left(x^{2}+5\right)(x-2)^{2}}<0$
Numerator (Zeroes): $x=-5,3$
Denominator (Undefined):no solution or $x=2$

Interval	$(-\infty,-4)$	$(-4,-2)$	$(-2,-1)$	$(-1,4)$
$\mathbf{2}$	+	+	+	+
$(\boldsymbol{x}+5)$	-	+	+	+
$(\boldsymbol{x}-\mathbf{3})$	-	-	-	+
$\left(x^{2}+5\right)$	+	+	+	+
$(\boldsymbol{x}-\mathbf{2})^{2}$	+	+	+	+
Sign of $\boldsymbol{f}(\boldsymbol{x})$	+	-	-	+

$x \in(-5,2) \cup(2,3)$

Special Case

Special case rational functions occurs when a numerator factor and a denominator factor eliminate each other. A hole in the graph appears at the x value of the eliminated factor, and the y value of the x substituted into the function. Recognized as a discontinuity.

- Factor the numerator and denominator appropriately, then eliminate

Example: $\quad g(x)=\frac{2 x^{2}-7 x-4}{2 x^{2}+5 x+2}$
$g(x)=\frac{(2 x+1)(x-4)}{(2 x+1)(x+2)} ; x \neq-2,-\frac{1}{2}$
$g(x)=\frac{x-4}{x+2}$
There is a hole at the point $\left(-\frac{1}{2},-3\right)$
Example: $\quad f(x)=\frac{x^{2}-x-6}{x+2}$
$f(x)=\frac{(x-3)(x+2)}{x+2}$
$f(x)=x-3 ; x \neq-2$ There is a hole at the point $(-2,-5)$

Radian Measure

Radian measure is the standard for measuring angles. Alternative method to degrees.

- 1 radian is the measure of the angle subtended at the center of a circle by an arc equal in length to the radius of the circle
- Number of radians is the arc length divided by the radius

Formula: $\quad \theta=\frac{a}{r}$

- Relationship between degrees and radian measure: $\theta=360^{\circ} \rightarrow \frac{\text { arc length }}{r}$, or the circumference of the whole circle. Therefore, $\theta=\frac{2 \pi r}{r}=2 \pi(\mathrm{rad})=360^{\circ}$

Example: $\quad 1^{\circ}=\frac{\pi}{180^{\circ}}(\mathrm{rad})$
Example: $\quad 1(\mathrm{rad})=\frac{180^{\circ}}{\pi}$
Example: $\quad 45^{\circ} \rightarrow(\mathrm{rad})$

$$
\frac{\pi}{180}\left(\frac{45}{1}\right)=\frac{45 \pi}{180}=\frac{\pi}{4}
$$

Example: $\quad 200^{\circ} \rightarrow(\mathrm{rad})$

$$
\frac{\pi}{180}(200)=\frac{10 \pi}{9}
$$

Example: $\quad \frac{2 \pi}{3} \rightarrow$ (degrees)

$$
\frac{180}{\pi}\left(\frac{2 \pi}{3}\right)=120^{\circ}
$$

Example: $\quad 2.3$ (rad) \rightarrow (degrees)

$$
\frac{180}{\pi}(2.3)=131.8^{\circ}
$$

- Similar to degrees, radians also has special angles and triangles
- List of special angles

Degrees	Radians
$\mathbf{3 0}^{\circ}$	$\frac{\pi}{6}$
$\mathbf{4 5}^{\circ}$	$\frac{\pi}{4}$
$\mathbf{6 0}^{\circ}$	$\frac{\pi}{3}$
$\mathbf{9 0}^{\circ}$	$\frac{\pi}{2}$
$\mathbf{1 8 0}^{\circ}$	$\frac{\pi}{2}$
$\mathbf{2 7 0}^{\circ}$	$\frac{3 \pi}{2}$
$\mathbf{3 6 0}^{\circ}$	2π

- Trigonometric relationships fall under the special triangles
- $x=$ adjacent, $y=$ opposite, $r=$ hypotenuse
- Recognizing that a triangle with angles (θ) of $\frac{\pi}{4}, 45^{\circ} ; x=1, y=1, r=\sqrt{2}$
- Recognizing that a triangle with angles (θ) of $\frac{\pi}{6}, 30^{\circ} ; x=\sqrt{3}, y=1, r=2$
- Recognizing that a triangle with angles (θ) of $\frac{\pi}{3}, 60^{\circ} ; x=1, y=\sqrt{3}, r=2$

Example:

$$
\cos \frac{\pi}{6}=\frac{\sqrt{3}}{2}(\text { Exact Values })
$$

Example: $\quad \sin \frac{2 \pi}{3}=\frac{\sqrt{3}}{2}$
Example: $\quad \sin \frac{7 \pi}{4}=-\frac{1}{\sqrt{2}}$
Example: $\quad \sec \frac{5 \pi}{6}=\frac{1}{\cos \frac{5 \pi}{6}}=-\frac{s}{\sqrt{3}}$

Unit Circle

When the radius of a unit circle is 1 , special triangles and relations can be drawn up between trigonometric ratios. The relationship between radian angles and side lengths of a right angle triangle.

- In all unit circle cases, where the radius is 1 , on a Cartesian plane, the point of the terminal arm will have the coordinates x, y where $x=\cos \theta, y=\sin \theta, \theta$ in standard position

Formula:

$$
\begin{aligned}
& \sin \theta=\frac{y}{r}, r=1 \\
& \operatorname{Sin} \theta=y \\
& \cos \theta=\frac{x}{r}, r=1 \\
& \cos \theta=x \\
& \therefore P(x, y)=(\cos \theta, \sin \theta)
\end{aligned}
$$

- Evaluate for exact values only

Example: $\frac{5 \pi}{3}$

$$
\begin{aligned}
& \text { (y) } \sin \frac{5 \pi}{3}=-\frac{\sqrt{3}}{2} \\
& \text { (x) } \cos \frac{5 \pi}{3}=\frac{1}{2} \\
& \tan \frac{5 \pi}{3}=-\frac{\sqrt{3}}{2} \div \frac{1}{2}=\sqrt{3} \\
& \csc \frac{5 \pi}{3}=-\frac{2}{\sqrt{3}} \\
& \sec \frac{5 \pi}{3}=2 \\
& \cot \frac{5 \pi}{3}=-\frac{1}{\sqrt{3}}
\end{aligned}
$$

Example: $\quad-\frac{\pi}{4}$
$\sin -\frac{\pi}{4}=-\frac{1}{\sqrt{2}}$
$\cos -\frac{\pi}{4}=\frac{1}{\sqrt{2}}$
$\tan -\frac{\pi}{4}=-1$
$\csc -\frac{\pi}{4}=-\sqrt{2}$
$\sec -\frac{\pi}{4}=\sqrt{2}$
$\cot -\frac{\pi}{4}=-1$
Example: $\quad \cos \frac{2 \pi}{3} \cos \frac{5 \pi}{6}+\sin \frac{2 \pi}{3} \sin \frac{5 \pi}{6}$
$=\left(-\frac{1}{2}\right)\left(-\frac{\sqrt{3}}{2}\right)+\left(\frac{\sqrt{3}}{2}\right)\left(\frac{1}{2}\right)$
$=\frac{\sqrt{3}}{4}+\frac{\sqrt{3}}{4}$
$=\frac{2 \sqrt{3}}{4}$
$=\frac{\sqrt{3}}{2}$

Equivalent Trigonometric Expression

Consider the x and y values when reflected into different quadrants. In quadrant 1 the terminal arm would be $P(x, y),(\cos \theta, \sin \theta)$. Occur at $\pi, 2 \pi$.

- In quadrant 1 , all the ratios are positive, in quadrant $2, \sin \theta$ is positive. In quadrant 2 the terminal arm would be $P(-x, y),(-\cos \theta, \sin \theta)$

$$
\begin{array}{ll}
\text { Formula: } & \alpha=\pi-\theta \\
& \cos (\pi-\theta)=-\cos \theta \\
& \sin (\pi-\theta)=\sin \theta \\
\text { Example: } & \sin \frac{\pi}{4}=\sin \left(\pi-\frac{\pi}{4}\right)=\frac{3 \pi}{4} \\
\text { Example: } & \cos \frac{\pi}{3}=-\cos \left(\pi-\frac{\pi}{3}\right) \\
& \left(\frac{1}{2}\right)=\left(-\frac{1}{2}\right)
\end{array}
$$

- In quadrant 1 , all the ratios are positive, in quadrant $4, \cos \theta$ is positive. In quadrant 4 the terminal arm would be $P(x,-y),(\cos \theta,-\sin \theta)$

$$
\begin{array}{ll}
\text { Formula: } & \alpha=2 \pi-\theta \\
& \cos (2 \pi-\theta)=\cos \theta \\
& \sin (2 \pi-\theta)=-\sin \theta \\
\text { Example: } & \cos \frac{\pi}{6}=\cos \left(2 \pi-\frac{\pi}{6}\right) \\
& \frac{\sqrt{3}}{2}=\cos \left(\frac{11 \pi}{6}\right) \\
& \frac{\sqrt{3}}{2}=\frac{\sqrt{3}}{2}
\end{array}
$$

- In quadrant 1 , all the ratios are positive, in quadrant $3, \tan \theta$ is positive. In quadrant 3 the terminal arm would be $P(-x,-y),(-\cos \theta,-\sin \theta)$

$$
\begin{array}{ll}
\text { Formula: } & \alpha=\pi+\theta \\
& \cos (\pi+\theta)=-\cos \theta \\
& \sin (\pi+\theta)=-\sin \theta
\end{array}
$$

Co-related and co-functioned Identities

The following co-function identities relate. Occur at $\frac{\pi}{2}, \frac{3 \pi}{2}$.

- For all occurrences of $\frac{\pi}{2}$ and the sum of the angle

$$
\begin{aligned}
& \text { Formula: } \\
& \qquad \begin{aligned}
& \cos \theta=\cos (-\theta) \\
& -\sin \theta=\sin (-\theta) \\
& \cos \left(\frac{\pi}{2}+\theta\right)=-\sin \theta \\
& \sin \left(\frac{\pi}{2}+\theta\right)=\cos \theta \\
& \tan \left(\frac{\pi}{2}+\theta\right)=-\cot \theta
\end{aligned}
\end{aligned}
$$

- For all occurrences of $\frac{\pi}{2}$ and the difference of the angle

$$
\text { Formula: } \quad \begin{aligned}
\cos \theta & =\sin \left(\frac{\pi}{2}-\theta\right) \\
\sin \theta & =\cos \left(\frac{\pi}{2}-\theta\right) \\
\tan \theta & =\cot \left(\frac{\pi}{2}-\theta\right) \\
\sec \theta & =\csc \left(\frac{\pi}{2}-\theta\right) \\
\csc \theta & =\sec \left(\frac{\pi}{2}-\theta\right) \\
\cot \theta & =\tan \left(\frac{\pi}{2}-\theta\right)
\end{aligned}
$$

- For all occurrences of $\frac{3 \pi}{2}$ and the sum of the angle

Formula: $\quad \sin \theta=\cos \left(\frac{3 \pi}{2}+\theta\right)$

$$
-\cos \theta=\sin \left(\frac{3 \pi}{2}+\theta\right)
$$

- For all occurrences of $\frac{3 \pi}{2}$ and the difference of the angle

$$
\text { Formula: } \begin{aligned}
-\sin \theta=\cos \left(\frac{3 \pi}{2}-\theta\right) \\
-\cos \theta=\sin \left(\frac{3 \pi}{2}-\theta\right)
\end{aligned}
$$

- Solve for θ, Express as a function of its co-related acute angle

Example: $\quad \cos \frac{\pi}{7}=\sin \theta$
$\frac{\pi}{7}=\frac{\pi}{2}-\theta$
$\theta=\frac{\pi}{2}-\frac{\pi}{7}$
$\theta=\frac{5 \pi}{14}$
$\cos \frac{\pi}{7}=\cos \left(\frac{\pi}{2}-\frac{5 \pi}{14}\right)$
$\therefore \cos \frac{\pi}{7}=\sin \frac{5 \pi}{14}$
Example: $\quad \cot \frac{4 \pi}{9}=\tan \theta$
$\frac{4 \pi}{9}=\frac{\pi}{2}-\theta$
$\theta=\frac{\pi}{2}-\frac{4 \pi}{9}$
$\theta=\frac{\pi}{18}$
$\cot \frac{4 \pi}{9}=\cot \left(\frac{\pi}{2}-\frac{\pi}{18}\right)$
$\therefore \cot \frac{4 \pi}{9}=\tan \frac{\pi}{18}$
Example: $\quad \cos \frac{13 \pi}{18}=-\sin \theta$
$\frac{13 \pi}{18}=\frac{\pi}{2}+\theta$
$\theta=\frac{13 \pi}{18}-\frac{\pi}{2}$
$\theta=\frac{2 \pi}{9}$
$\cos \frac{13 \pi}{18}=\cos \left(\frac{\pi}{2}=\frac{2 \pi}{9}\right)$
$\therefore \cos \frac{13 \pi}{18}=-\sin \frac{2 \pi}{9}$

$$
\begin{array}{ll}
\text { Example: } & \cot \frac{13 \pi}{14}=-\tan \theta \\
& \frac{13 \pi}{14}=\frac{\pi}{2}+\theta \\
& \theta=\frac{13 \pi}{14}-\frac{\pi}{2} \\
& \theta=\frac{3 \pi}{7} \\
& \cot \frac{13 \pi}{14}=\cot \left(\frac{\pi}{2}+\frac{3 \pi}{7}\right) \\
& \therefore \cot \frac{13 \pi}{14}=-\tan \frac{3 \pi}{7} \\
& \csc a=\sec 1.45 \\
& 1.45=\frac{\pi}{2}-a \\
& a=1.45-\frac{\pi}{2} \\
& a=1.45-1.37 \\
& a=0.12 \\
& \csc 0.12=\sec (1.37-0.12) \\
& \csc 0.12=\sec 1.45
\end{array}
$$

- Simplify the identities

Example: $\quad \sin (\pi-x)+\cos \left(\frac{\pi}{2}+x\right)+\sin \left(\frac{3 \pi}{2}-x\right)-\cos (-x)$

$$
\begin{aligned}
& =\sin x+(-\sin x)+(-\cos x)-\cos x \\
& =-2 \cos x
\end{aligned}
$$

Example: $\quad \cos \left(\frac{\pi}{2}-x\right)-\sin (2 \pi-x)-\cos (\pi-x)+\tan \left(\frac{\pi}{2}-x\right)$

$$
=\sin x-\sin x-\cos x+\cot x
$$

$$
=2 \sin x-\cos x+\cot x
$$

Compound Angle Formulas

Derived from a rotated triangle with a hypotenuse of 1

- For all sums

$$
\text { Formula: } \quad \begin{aligned}
& \sin (a+b)=(\sin a)(\cos b)+(\cos a)(\sin b) \\
& \cos (a+b)=(\cos a)(\cos b)-(\sin a)(\sin b) \\
& \tan (a+b)=\frac{\tan a+\tan b}{1-(\tan a)(\tan b)}
\end{aligned}
$$

- For all differences

$$
\text { Formula: } \quad \begin{aligned}
\sin (a-b) & =(\sin a)(\cos b)-(\cos a)(\sin b) \\
\cos (a-b) & =(\cos a)(\cos b)+(\sin a)(\sin b) \\
\tan (a-b) & =\frac{\tan a-\tan b}{1+(\tan a)(\tan b)}
\end{aligned}
$$

- Solve for the identity

Example: $\quad \sin \frac{\pi}{6} \cos \frac{\pi}{3}+\cos \frac{\pi}{6} \sin \frac{\pi}{3}$
$=\sin \left(\frac{\pi}{6}+\frac{\pi}{3}\right)$
$=\sin \frac{\pi}{2}$
Example: $\quad \cos \frac{\pi}{4} \cos \frac{\pi}{2}-\sin \frac{\pi}{4} \sin \frac{\pi}{2}$
$=\cos \left(\frac{\pi}{4}+\frac{\pi}{2}\right)$
$=\cos \left(\frac{3 \pi}{4}\right)$

- Solve and find exact values

$$
\text { Example: } \quad \begin{aligned}
& \sin \frac{\pi}{12}=\sin \left(\frac{3 \pi}{4}-\frac{2 \pi}{3}\right) \text { or } \sin \left(\frac{\pi}{3}-\frac{\pi}{4}\right) \\
& =\sin \frac{\pi}{3} \cos \frac{\pi}{4}-\cos \frac{\pi}{3} \sin \frac{\pi}{4} \\
& =\left(\frac{\sqrt{3}}{2}\right)\left(\frac{1}{\sqrt{2}}\right)=\left(\frac{1}{2}\right)\left(\frac{1}{\sqrt{2}}\right) \\
& =\frac{\sqrt{3}}{2 \sqrt{2}}-\frac{1}{2 \sqrt{2}} \\
& =\frac{\sqrt{3}-1}{2 \sqrt{2}}
\end{aligned}
$$

- Solve through identities to get exact values

Example: \quad Given $\sin x=-\frac{5}{12}$, in quadrant $4, \cos y=\frac{4}{7}$, in quadrant 1 $\cos (x+y)=(\cos x)(\cos y)-(\sin x)(\sin y)$
Solve: $\sin x=-\frac{5}{12} ; \frac{y}{r}$
$x=\sqrt{119}$
$\therefore \cos x=\frac{\sqrt{119}}{12}$
Solve: $\cos y=\frac{4}{7} ; \frac{x}{r}$
$x=\sqrt{33}$
$\therefore \sin y=\frac{\sqrt{33}}{12}$
$\therefore \cos (x+y)=\left(\frac{\sqrt{119}}{12}\right)\left(\frac{4}{7}\right)-\frac{5}{12}\left(\frac{\sqrt{33}}{7}\right)$
$=\frac{4 \sqrt{119}+5 \sqrt{33}}{84}$

Double Angle Formulas

Derived from doubling compound angle formulas

- For $\sin \theta$

$$
\begin{array}{ll}
\text { Formula: } & \sin 2 a=\sin (a+a) \\
& \sin 2 a=\sin a \cos a+\cos a \sin a \\
& \therefore \sin 2 a=2 \sin a \cos a
\end{array}
$$

- For $\cos \theta$

$$
\begin{array}{ll}
\text { Formula: } & \cos 2 a=\cos (a+a) \\
& \cos 2 a=\cos a \cos a-\sin a \sin a \\
& \therefore \cos 2 a=\cos ^{2} a-\sin ^{2} a \\
& \therefore \cos 2 a=1-\sin ^{2} a \\
& \therefore \cos 2 a=2 \cos ^{2} a-1
\end{array}
$$

- For $\tan \theta$

Formula: $\quad \tan 2 a=\tan (a+a)$
$\tan 2 a=\frac{\tan a+\tan a}{1-\tan a \tan a}$
$\therefore \tan 2 a=\frac{2 \tan a}{1-\tan ^{2} a}$

Advanced Trigonometric Identities

To prove an identity, the left side and right side should be dealt individually.

- There are guidelines for proving identities
- Being with the more complicated side and use identities to transform that side
- Express everything in terms of sine and cosine
- Consider expanding, factoring, or conjugates
- Quotient identities

$$
\text { Formula: } \quad \begin{aligned}
\tan x & =\frac{\sin x}{\cos x} \\
\quad \cot x & =\frac{\cos x}{\sin x}
\end{aligned}
$$

- Reciprocal identities

$$
\text { Formula: } \quad \begin{aligned}
\csc x & =\frac{1}{\sin x} \\
\sec x & =\frac{1}{\cos x} \\
\cot x & =\frac{1}{\tan x}
\end{aligned}
$$

- Pythagorean Identities

Formula: $\quad \sin ^{2} x+\cos ^{2} x=1$

$$
1+\tan ^{2} x=\sec ^{2} x
$$

$$
1+\cot ^{2} x=\csc ^{2} x
$$

- Also recall compound angle formulae and double angle formulae
- Recall the guidelines for proving identities

Example: $\quad \cos x=\frac{1}{\cos x}-\sin x \tan x$

$$
\cos x=\frac{1}{\cos x}-\sin x \frac{\sin x}{\cos x}
$$

$$
\cos x=\frac{1}{\cos x}-\frac{\sin ^{2} x}{\cos x}
$$

$$
\cos x=\frac{1-\sin ^{2} x}{\cos x}
$$

$$
\cos x=\frac{\cos ^{2} x}{\cos x}
$$

$$
\cos x=\cos x
$$

$$
\therefore \text { L.S. }=\text { R.S. }
$$

$$
\begin{array}{ll}
\text { Example: } & 1+\cos x=\frac{\sin ^{2} x}{1-\cos x} \\
& 1+\cos x=\frac{1-\cos ^{2} x}{1-\cos x} \\
1+\cos x=\frac{(1-\cos x)(1+\cos x)}{(1-\cos x)} \\
1+\cos x=1+\cos x \\
\therefore \text { L.S. } & =\text { R.S. } \\
\text { Example: } \quad \csc x & =\frac{1+\sec x}{\tan x+\sin x} \\
& \frac{1}{\sin x}
\end{array}=\frac{1+\frac{1}{\cos x}}{\frac{\sin x}{\cos x}+\sin x} .
$$

Trigonometric Functions

Calculating the sine and cosine functions in radians.

- \mathbb{Z} is a set of integers
- The function of $y=\sin x$

Example: $\quad y=\sin x$
Domain: $x \in[-2 \pi, 2 \pi]$ non-continuous, $x \in(-\infty, \infty)$ continuous
Range: $y \in[-1,1]$
Period: 2π
Symmetry: $\sin (-x)=-\sin x \rightarrow$ Odd function
x-int: $\{x \in \mathbb{R} \mid x=m \pi, m \in \mathbb{Z}\}$
y-int: $\{0,0\}$

- The function of $y=\cos x$

Example: $\quad y=\cos x$
Domain: $x \in[-2 \pi, 2 \pi]$ non-continuous, $x \in(-\infty, \infty)$ continuous Range: $y \in[-1,1]$
Period: 2π
Symmetry: $\cos (-x)=\cos x \rightarrow$ Even function
x -int: $\left\{x \in \mathbb{R} \left\lvert\, x=\frac{\pi}{2}+m \pi\right., m \in \mathbb{Z}\right\}$ y-int: $\{0,1\}$

- Amplitude determined by a constant
- Changes in period, result of change in distance/time for function to repeat. Determined by $\frac{2 \pi}{b}$

Formula: $\quad y=a \sin b x$
Example: $\quad y=4 \sin \frac{4}{3} \pi$

- Secant and Cosecant functions have specific domain and range

Example: $\quad y=\sec x$
D: $\left\{x \in \mathbb{R} \left\lvert\, x \neq \frac{\pi}{2}+m x\right., m \in \mathbb{Z}\right\}$
$\mathrm{R}: y \in(-\infty,-1] \cup[1, \infty)$
Example: $\quad y=\csc x$
D: $\{x \in \mathbb{R} \mid x \neq m x, m \in \mathbb{Z}\}$
$\mathrm{R}: y \in(-\infty,-1] \cup[1, \infty)$

Transforming Trigonometric Functions

Accompanied by standard transformations of functions, sketching functions can be done by addressing 5 key points in a trigonometric function

- The transformed sine and cosine functions

Formula: $\quad y=a \sin [k(x-d)]+c$
Formula: $\quad y=a \cos [k(x-d)]+c$

- Vertical Stretch/Compression (Amplitude)
$-a$: Reflection on x-axis , $0<a<1$: Compression, $a>1=$ Stretch
- Horizontal Stretch/Compression (Reciprocal)
$-k$: Reflection on y-axis, $0<k<1$: Stretch, $k>1=$ Compression
- Phase Shift
$-d$:Moves Right, $+d$:Moves Left
- Vertical Translation
$-c$:Moves Down, $+c$:Moves Up
- The Period of the function can be modeled by $\frac{2 \pi}{k}$

Example: $\quad y=4 \cos \left[\frac{1}{2}\left(x-\frac{3 \pi}{2}\right)\right]-1 ; a=4, k=\frac{1}{2}, d=+\frac{3 \pi}{4}, c=-1$
Period: $\left(\frac{\frac{2 \pi}{1}}{2}\right)=4 \pi$
Amplitude: 4
Phase Shift: $\frac{3 \pi}{2}$
Vertical Translation: Down 1

\boldsymbol{x}	\boldsymbol{y}	$\boldsymbol{x}\left(\mathbf{2 x}+\frac{\mathbf{3 \pi}}{\mathbf{2}}\right)$	$\boldsymbol{y}(\mathbf{4} \boldsymbol{y}-\mathbf{1})$
$\mathbf{0}$	1	$\frac{3 \pi}{2}$	3
$\boldsymbol{\pi}$	0	$\frac{5 \pi}{2}$	-1
$\boldsymbol{\pi}$	-1	$\frac{7 \pi}{2}$	-5
$\frac{\mathbf{3 \pi}}{\mathbf{2}}$	0	$\frac{9 \pi}{2}$	-1
$\mathbf{2 \pi}$	1	$\frac{11 \pi}{2}$	3

Example: $\quad y=-2 \sin \left[2\left(x+\frac{\pi}{3}\right)\right]+2 ; a=2, k=2, d=-\frac{\pi}{3}, c=2$
Period: $\left(\frac{2 \pi}{2}\right)=\pi$
Amplitude: 2; Reflected on x-axis
Phase Shift: $\frac{\pi}{3}$
Vertical Translation: Up 2

\boldsymbol{x}	\boldsymbol{y}	$\boldsymbol{x}\left(\frac{\mathbf{1}}{\mathbf{2}} \boldsymbol{x}-\frac{\boldsymbol{\pi}}{\mathbf{3}}\right)$	$\boldsymbol{y}(-\mathbf{2 y}+\mathbf{2})$
$\mathbf{0}$	0	$-\frac{\pi}{3}$	2
$\boldsymbol{\pi}$	1	$-\frac{\pi}{12}$	0
$\boldsymbol{2}$	0	$\frac{\pi}{6}$	2
$\frac{\mathbf{3 \pi}}{\mathbf{2}}$	-1	$\frac{5 \pi}{12}$	4
$\mathbf{2 \pi}$	0	$\frac{2 \pi}{3}$	2

- Given enough information, it is possible to determine the equation of a trigonometric function

Example: The average depth of water at the end of a dock is 6 feet. This varies 2 feet in both directions with the tide. Suppose there is a high tide at 4 AM . If the tide goes from low to high every 6 hours, write a cosine function $d(t)$ describing the depth (in feet) of the water as a function of time (in seconds). (note: $t=4$ corresponds with 4 AM)

$$
\text { Let } d(t)=a \cos [k(t-d)]+c
$$

$$
\text { Amplitude: } a=\frac{\operatorname{Max}-\operatorname{Min}}{2}=\frac{8-4}{2}=2
$$

Vertical Translation: $c=6$
Period: $\frac{2 \pi}{k}=12 ; \therefore k=\frac{\pi}{6}$ (Horizontal Stretch)
Phase Shift: $d=4$
Vertical Shift: $c=\frac{\text { Max }+ \text { Min }}{2}=\frac{8+4}{2}=6$
$\therefore d(t)=2 \cos \left[\frac{\pi}{6}(t-4)\right]+6$

- Characteristics of tangent and cotangent functions
- Tangent, $y=\tan x$ has no minimum or maximum points. Has a period of π. It's zeroes are $\{x \in \mathbb{R} \mid x=m \pi, m \in \mathbb{Z}\}$. Its vertical asymptotes are $\left\{x \in \mathbb{R} \left\lvert\, x=\frac{\pi}{2}+m \pi\right., m \in \mathbb{Z}\right\}$. Y -intercept is $(0,0)$
- Cotangent, $y=\cot x$ has no minimum or maximum points. Has a period of π. It's zeroes are $\left\{x \in \mathbb{R} \left\lvert\, x=\frac{\pi}{2}+m \pi\right., m \in \mathbb{Z}\right\}$. Its vertical asymptotes are $\{x \in \mathbb{R} \mid x=m \pi, m \in \mathbb{Z}\}$. Y-intercept is Undefined

Solving Trigonometric Equations

Recall trigonometric identities and special triangles. Solving for both approximate and exact values.
Solve for x.

- Isolate for x and then useany method to determine the values of x
- Watch the interval and determine quadrants of x

Example: \quad Solve for exact values for $4 \cos ^{2} x-3=0, x \in[0,2 \pi]$
$4 \cos ^{2} x=3$
$\cos ^{2} x=\frac{3}{4}$
$\cos x= \pm \frac{\sqrt{3}}{2}$
$\therefore x=\frac{\pi}{6},\left(\pi-\frac{\pi}{6}=\frac{5 \pi}{6}\right),\left(\pi+\frac{\pi}{6}=\frac{7 \pi}{6}\right),\left(2 \pi-\frac{\pi}{6}=\frac{11 \pi}{6}\right)$
Example: \quad Solve for exact values for $\sec ^{2} x-3 \sec x+2=0 x \in[0,2 \pi]$
Let $\sec x=y$
$y^{2}-3 y+2=0$
$(y-1)(y-2)=0$
$(\sec x-1)(\sec x-2)=0$
$\sec x=1 \rightarrow \cos x=1$
$\sec x=2 \rightarrow \cos x=\frac{1}{2}$
$\therefore x=\frac{\pi}{3}, \frac{5 \pi}{3}$ (All positive quadrants of cosine)

$$
\begin{array}{ll}
\text { Example: } & -3 \cos ^{2} x-8 \sin x=0 \\
& -3\left(1-\sin ^{2} x\right)-8 \sin x=0 \\
& -3+3 \sin ^{2} x-8 \sin x=0 \\
& 3 \sin ^{2} x-8 \sin x-3=0 \\
& (3 \sin x+1)(\sin x-3)=0 \\
& \sin x=3 \text { (No solution) } \\
& \sin x=-\frac{1}{3} \rightarrow x=\sin ^{-1}\left(\frac{1}{3}\right)=0.34 \\
& \therefore x=(\pi+0.34=3.48)
\end{array}
$$

Example: \quad Solve for exact values for $\tan \frac{x}{2} \cos ^{2} x-\tan \frac{x}{2}=0 x \in[0,2 \pi]$

$$
\begin{aligned}
& \tan \frac{x}{2}\left(\cos ^{2} x-1\right)=0 \\
& x=\tan ^{-1} 0 \\
& x=\cos ^{-1}(\pm 1) \\
& \therefore x=0, \pi, 2 \pi
\end{aligned}
$$

Example: \quad Solve for exact values for $\tan x \sin 2 x-1=0 x \in[0, \pi]$ $\left(\frac{\sin x}{\cos x}\right)(2 \sin x \cos x)-1=0$
$2 \sin ^{2} x-1=0$
$x=\sin ^{-1}\left(\pm \frac{\sqrt{1}}{2}\right)$
$\therefore x=\frac{\pi}{4}, \frac{3 \pi}{4}$

Exponential Function

Recall law of exponents and its applications.

- Exponential function is a base to a power of x

Formula: $\quad y=b^{x}, b>0, b \neq 0$

- Has a rate of change that is increasing/decreasing, proportional to the function for $b>1 / 0<$ $b<1$
- Domain of $\{x \in \mathbb{R}\}$
- Range of $\{y \in \mathbb{R} \mid y>0\}$
- y-intercepts of $(0,1)$
- Horizontal asymptote at $y=0$
- Recall all laws of exponents

Example: $\quad y=b^{1}$
$y=1$
Example: $\quad y=2^{-2}$
$y=\frac{1}{4}$
Example: $\quad y=2^{-3}$
$y=\frac{1}{8}$
Example: $\quad y=\frac{1}{2}^{x}$
$y=\frac{1}{4}$
Example: $\quad y=\frac{1}{2}^{-2}$
$y=2^{2}$
$y=4$

Example: $\quad \frac{\left(2 x^{-6} y^{4}\right)^{3}\left(-4 x^{5} y\right)^{2}}{\left(3 y^{-7}\right)^{3}\left(x^{3} y^{4}\right)}$

$$
\begin{aligned}
& \frac{\left(2^{3} x^{-18} y^{12}\right)\left(-4^{2} x^{10} y^{2}\right)}{\left(3^{3} y^{-21}\right)\left(x^{3} y^{4}\right)} \\
& \frac{\left(8 x^{-18} y^{12}\right)\left(16 x^{10} y^{2}\right)}{\left(27 y^{-21}\right)\left(x^{3} y^{4}\right)} \\
& \frac{128 x^{-8} y^{14}}{27 x^{3} y^{-17}} \\
& \frac{128 x^{-11} y^{31}}{27}=\frac{128 y^{31}}{27 x^{11}}
\end{aligned}
$$

- Recall the Absolute function
- Absolute function takes the positive value of the expression
- When graphing an absolute function, only the positive values are graphed

$$
\begin{array}{ll}
\text { Formula: } & y=|x| \\
\text { Example: } & y=|2-3| \\
& y=|-1| \\
& y=1
\end{array}
$$

- Recall the inverse function
- $\quad f^{-1}(x)$ is the inverse of $f(x)$. Switch x with y to find the inverse function. The inverse function, is $f(x)$ reflected on $y=x$

Formula: $\quad x=b^{y}$

- Domain of $\{x \in \mathbb{R} \mid x>0\}$
- Range of $\{y \in \mathbb{R} \mid\}$
- x-intercepts of $(1,0)$
- Vertical asymptote at $x=0$

$$
\begin{array}{ll}
\text { Example: } & f(x)=2 x-1 \\
& f^{-1}(x)=2 x-1 \\
& y=2 x-1 \\
& x=2 y-1 \\
& y=\frac{x+1}{2} \\
& \therefore f^{-1}(x)=\frac{x+1}{2}
\end{array}
$$

- Given a table of values, you an find the function, determine if its exponential, and determine its key features

Example:

\boldsymbol{x}	y	Δy
$\mathbf{- 1}$	$\frac{1}{3}$	
$\mathbf{0}$	1	$\frac{2}{3}$
$\mathbf{1}$	3	2
$\mathbf{2}$	9	6
$\mathbf{3}$	27	18

$\Delta \mathrm{y}: \frac{2}{\frac{2}{3}}=3, \frac{6}{2}=3 ; \mathrm{y}: \frac{3}{1}=3, \frac{9}{3}=3$
$\overline{3}$
\because rate of change is increasing in proportion to the function
\therefore the function is exponential
Test: $9=b^{2}$
(3) ${ }^{2}=b^{2}$
$\because b=3$
$\therefore y=3^{x}$
D: $\{x \in \mathbb{R}\}$
$\mathrm{R}:\{y \in \mathbb{R} \mid y>0\}$
y-int: $(0,1)$
H.A.: $y=0$

Logarithms

The logarithm, $\log x$, of a number, x, to a given base, b, is equal to the exponent, y, to which the based is raisedin order to produce x.

- The following are equivalent expressions

$$
\text { Formula: } \quad \log _{b} x=y \equiv x=b^{y}
$$

- The expression can be rewritten in both logarithmic form and exponential form

$$
\begin{array}{ll}
\text { Example: } & 2^{3}=8 \\
& 3=\log _{2} 8
\end{array}
$$

Example: $\quad 3^{-2}=\frac{1}{9}$

$$
-2=\log _{3}\left(\frac{1}{9}\right)
$$

Example: $\quad \log _{4} 16$

$$
4^{x}=16
$$

$$
4^{x}=4^{2}
$$

$$
x=2
$$

$$
\therefore 4^{2}=16
$$

Example: $\quad \log _{3}\left(\frac{1}{27}\right)$

$$
\text { Let: } \log _{3}\left(\frac{1}{27}\right)=x
$$

$$
3^{x}=\frac{1}{27}
$$

$$
3^{x}=3^{-3}
$$

$$
\therefore x=3
$$

- Common logarithms are logarithms with a base 10 . They do not have to be written into the expression

$$
\begin{array}{ll}
\text { Example: } & y=\log 100 \\
& 10^{y}=100 \\
& 10^{y}=10^{2} \\
& \therefore y=2
\end{array}
$$

- The logarithmic function takes the form $y=\log _{b} x, b>0, b \neq 0$
- The logarithmic function is also the inverse function of an exponential function. $x=b^{y} ; y=$ b^{x}
- Transformations of exponential and logarithmic functions

Formula: $\quad y=a(b)^{k(x-d)}+c$
Formula: $\quad f(x)=a \log _{b}[k(x-d)]+c$

- To graph an exponential function, first identify the basic function, then create a table of values, and lastly apply the mapping equation

Example: $\quad y=-2\left(\frac{1}{2}\right)^{x-3}-1$
$y=\frac{1}{2}^{x}$
$(x, y) \rightarrow(x+3,-2 y-1)$
D: $\{x \in \mathbb{R}\}$
$\mathrm{R}:\{y \in \mathbb{R} \mid y<-1\}$
Asymptote: $y=-1$
as $x \rightarrow \infty, y \rightarrow-1$
as $x \rightarrow-\infty, y \rightarrow-\infty$

- To graph an logarithmic function, first identify the basic function, write in exponential form, inverse the function, then create a table of values (switch x and y values), and lastly apply the mapping equation

$$
\begin{array}{ll}
\text { Example: } & y=2 \log _{3}[2(x-2)]+1 \\
& y=\log _{3} x \\
& 3^{y}=x \\
& y=3^{x} \\
& (x, y) \rightarrow\left(\frac{1}{2} x+2,2 y+1\right) \\
& \mathrm{D}:\{x \in \mathbb{R} \mid x>2\} \\
& \mathrm{R}:\{y \in \mathbb{R}\} \\
& \text { Asymptote: } y=2 \\
& \text { as } x \rightarrow \infty, y \rightarrow \infty \\
& \text { as } x \rightarrow-\infty, y \rightarrow-\infty
\end{array}
$$

- Properties of Logarithms, where $x, y>0$
- Power Law

Formula: $\quad \log _{\mathrm{b}} x^{n}=n \log _{b} x$

- Change of Base

Formula: $\quad \log _{\mathbf{b}} m=\frac{\log m}{\log b}$

- Product Law

Formula: $\quad \log _{\mathrm{b}} x+\log _{b} y=\log _{b}(x y)$

- Quotient Law

Formula: $\quad \log _{\mathrm{b}} x-\log _{b} y=\log _{b}\left(\frac{x}{y}\right)$

- Radical Law

Formula: $\quad \log \sqrt[n]{x}=\log x^{\frac{1}{n}}=\frac{1}{n} \log x$

- State any Restrictions

Example: $\quad \log (x+1)$

$$
x+1>0
$$

$$
x>-1
$$

- Combination of these allow to evaluate logarithms

$$
\begin{array}{ll}
\text { Example: } & \log _{3} \sqrt{27} \\
& \log _{3}(27)^{\frac{1}{2}} \\
& \frac{1}{2} \log _{3} 27 \\
& \left(\frac{1}{2}\right)(3) \\
& \frac{3}{2}
\end{array}
$$

Example: $\quad \log _{2} 9$
$\frac{\log 9}{\log 2}$
3.17

Example: $\quad 3 \log _{16} 2+2 \log _{16} 8-\log _{16} 2$
$\log _{16} 2^{3}+\log _{16} 8^{2}-\log _{16} 2$
$\log _{16} 8+\log _{16} 64-\log _{16} 2$
$\log _{16} \frac{(8)(64)}{2}$
$\log _{16} 256$
2

- Changing the base of power requires you to express the result in terms of a power with a certain base

Example: $\quad 8=2^{3}$
Example: $\quad 4^{3}=\left(2^{2}\right)^{3}$
$=2^{6}$
Example: $\quad \sqrt{16} \times \sqrt[5]{32}^{3}=16^{\frac{1}{2}} \times 32^{\frac{3}{5}}$
$=\left(2^{4}\right)^{\frac{1}{2}} \times\left(2^{5}\right)^{\frac{3}{5}}$
$=2^{\frac{4}{2}} \times 2^{\frac{15}{5}}$
$=2^{2} \times 2^{3}$
$=2^{5}$
Example: 12
$2^{k}=12$
$\log 2^{k}=\log 12$
$k \log 2=\log 12$
$k=\frac{\log 12}{\log 2}$
$\therefore 12=2^{\frac{\log 12}{\log 2}}$

- Solving for powers with different bases

Example: $\quad 4^{2 x-1}=3^{x+2}$
$\log 4^{2 x-1}=\log 3^{x+2}$
$(2 x-1) \log 4=(x+2) \log 3$
$2 x \log 4-\log 4=x \log 3+2 \log 3$
$2 x \log 4-x \log 3=2 \log 3+\log 4$
$x(2 \log 4-\log 3)=2 \log 3+\log 4$
$x=\frac{2 \log 3+\log 4}{2 \log 4-\log 3}$
$x=2.14$

- Extraneous roots are invalid or non-real, because logarithms are positive
- Multiple methods are required to solve exponential and logarithmic equations

Example: $\quad 5^{3 x}=63$
$\log 5^{3 x}=\log 63$
$\frac{3 x \log 5}{3 \log 5}=\frac{\log 63}{3 \log 5}$
$x=0.9$
Example:

$$
\begin{aligned}
& 4\left(2^{x}\right)=3^{x+1} \\
& \log 4\left(2^{x}\right)=\log 3^{x+1} \\
& \log 4+\log 2^{x}=(\log 3)(x+1) \\
& \log 4+x \log 2=x \log 3+\log 3 \\
& x \log 2-x \log 3=\log 3-\log 4 \\
& x(\log 2-\log 3)=\log 3-\log 4 \\
& x=\frac{\log 3-\log 4}{\log 2-\log 3} \\
& \therefore x \doteq 0.7
\end{aligned}
$$

Example: $\quad \log _{3} 9+\log _{3} x=\log _{3} 24$
$\log _{3} 9 x=\log _{3} 24$
\because the bases are equal
$\frac{9 x}{9}=\frac{24}{9}$
$\therefore x=\frac{8}{3}$

- Factoring and simplifying may be necessary, including quadratic equation

$$
\begin{array}{ll}
\text { Example: } & 5^{2 x}-5^{x}-20=0 \\
& \text { Let } y=5^{x} \\
& y^{2}-y-20=0 \\
& (y-5)(y+4)=0 \\
& y=5,-4 \\
& 5^{x}=5^{1} \rightarrow x=1 \\
& 5^{x} \neq-4 \rightarrow \text { Never, } \because \text { its an extraneous root }
\end{array}
$$

- Conversion into exponential form may be necessary. Take the base of the logarithm to the power of the equation

Example: $\quad \log 2 x-\log 148=2$
$\log \frac{2 x}{148}=2$
$\log \frac{x}{74}=2$
$\frac{x}{74}=10^{2}$
$x=74$ (100)
$x=7400$
Example: $\quad \log _{3}(x-1)+\log _{3}(2 x+3)=1$
$\log _{3}(x-1)(2 x+3)=1$
$\log _{3}\left(2 x^{2}+x-3\right)=1$
$2 x^{2}+x-3=3^{1}$
$2 x^{2}+x-6=0$
$(2 x-3)(x+2)=0$
$\therefore x=\frac{3}{2}, x \neq-2$

- Consider the following properties of logarithms

Example:	$\log _{a} a=1$
Example:	$\log _{b} b^{x}=x$
Example:	$\log _{a} 1=0$
Example:	$b^{\log _{b} x=x}$
Example:	$\frac{1}{\log _{b} a}=\log _{a} b$

Sums and Differences of Functions

The superposition principle states that the sum of two or more functions can be found by adding the ordinates (y-coordinates) of the function at each abscissa (x-coordinate).

- Superposition can be constant or variable
- Given two functions, express as a sum

Example: $\quad h(x)=f(x)+g(x)$
When $f(x)=x^{2}, g(x)=3$
$\therefore h(x)=x^{2}+3$
Example: $\quad h(x)=f(x)+g(x)$
When $f(x)=x^{2}, g(x)=x$
$h(x)=x^{2}+x$
$\therefore h(x)=x(x+1)$

- Given two functions, express as a difference

Example: $\quad P(n)=R(n)-C(n)$
When $P(n)=8 n, C(n)=200+5 n$
$P(n)=8 n-(200+5 n)$
$P(n)=8 n-200-5 n$
$\therefore P(n)=3 n-200$

Products and Quotients of Functions

Combining functions in these matters will draw up calculable domain and range, intercepts, symmetry, and asymptotes.

- Given two functions, express as a product (expand)

$$
\begin{array}{ll}
\text { Example: } & p(x)=f(x) g(x) \\
& \text { When } f(x)=x+3, g(x)=x^{2}-x-12 \\
& p(x)=x^{3}-x^{2}-12 x-3 x^{2}-3 x-36 \\
& \therefore p(x)=x^{3}+2 x^{2}-15 x-36
\end{array}
$$

- Given two functions, express as a quotient

$$
\text { Example: } \quad q(x)=\frac{f(x)}{g(x)}
$$

$$
\text { When } f(x)=x+3, g(x)=x^{2}-x-12
$$

$$
\begin{aligned}
& q(x)=\frac{x+3}{(x+3)(x-4)} \\
& \therefore q(x)=\frac{1}{x-4}, x \neq 4,-3
\end{aligned}
$$

Composite Functions

Composite functions are when given 2 functions, $f(x)$ and $g(x)$, the composite of f and g is $f \circ g(x) \equiv f(g(x))$; expressed as f of g at x

- Given 2 functions, determine the composite combinations

Example: \quad Given $f(x)=\sqrt{x}, g(x)=x+5$

$$
\begin{aligned}
& f \circ g(4) \equiv f(g(4)) \\
& =f(4+5) \\
& =\sqrt{9} \\
& =3
\end{aligned}
$$

Example: \quad Given $f(x)=\sqrt{x}, g(x)=x+5$
$g \circ f(4) \equiv g(f(4))$
$=g(\sqrt{4})$
$=2+5$
$=7$

- Simplify composite functions

Example: \quad Given $f(x)=\sqrt{x}, g(x)=x+5$
$f \circ g(x) \equiv f(g(x))$
$=f(x+5)$
$=\sqrt{x+5}$
Example: \quad Given $f(x)=\sqrt{x}, g(x)=x+5$
$g \circ f(x) \equiv g(f(x))$
$=g(\sqrt{x})$
$=\sqrt{x}+5$
Example: \quad Given $f(x)=\sqrt{x}, g(x)=x+5$
$g \circ g(x) \equiv g(g(x))$
$=g(x+5)$
$=x+10$

- Because $g \circ f(x) \neq f \circ g(x)$; therefore, composition is not commutative
- The only time composition is commutative is when the composition is with itself and its inverse

Example: \quad Given $f(x)=\frac{3}{x-4}, g(x)=x^{2}$; Determine the domain
$f \circ g(x) \equiv f(g(x))$
$=f\left(x^{2}\right)$
$=\frac{3}{x^{2}-4}, x \neq \pm 2$
$x \in(-\infty,-2) \cup(-2,2) \cup(2, \infty)$
$y \in(-\infty, 0) \cup(0, \infty)$
Example: \quad Given $f(x)=\frac{3}{x-4}$

$$
\begin{aligned}
& f^{-1}(x) \\
& y=\frac{3}{x-4} \\
& x=\frac{3}{y-4} \\
& y-4=\frac{3}{x} \\
& y=\frac{3}{x}+4 \text { or } y=\frac{3+4 x}{x}
\end{aligned}
$$

Example: Given $f(x)=\frac{3}{x-4}, g(x)=x^{2}$
$f \circ f^{-1}(x) \equiv f\left(f^{-1}(x)\right)$
$=f\left(\frac{3+4 x}{x}\right)$
$=\left(\frac{3}{\frac{3+4 x}{x}}-4\right)$
$=\left(\frac{\frac{3}{3+4 x-4 x}}{x}\right)$
$=\frac{\frac{3}{3}}{x}$
$=x$
Example: \quad Given $f(x)=\frac{3}{x-4}, g(x)=x^{2}$
$f^{-1} \circ f(x) \equiv f^{-1}(f(x))$
$=x$

Rate of Change

Average rate of change is a change that takes place over an interval

- Quotient of change in y and x

Formula: $\quad \frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

- Given an interval, the average rate of change can be found

Formula: $\quad a \leq x \leq b$

$$
\frac{f(b)-f(a)}{b-a}
$$

Example: $\quad f(x)=x^{2}$
$2 \leq x \leq 3$
$\frac{f(3)-f(2)}{3-2}=\frac{9-4}{1}$

- A secant is a line joining 2 points on any curve
- Instantaneous rate of change is the slope of a tangent to a point on any curve
- There are multiple methods to find the instantaneous rate of change
- First method: average of average rate of change requires two intervals around a set value. An interval before the value and one after

Example:

$$
\begin{aligned}
& f(x)=x^{2} ; x=2 \\
& 1 \leq x \leq 2=3 \\
& 2 \leq x \leq 3=5 \\
& \frac{3+5}{2}=4
\end{aligned}
$$

- The second method requires graphing the function, then drawing the tangent and picking 2 points off the tangent line to calculate the slope
- The third method involves analyzing all secants close to the value

Example: $\quad f(x)=x^{2} ; x=2$
$P(2, f(2))=P(2,4)$
$Q(x, f(x))$
$m_{P Q}=\frac{f(x)-f(2)}{x-2}=\frac{x^{2}-4}{x-2}$

$\boldsymbol{x} \rightarrow \mathbf{2}^{-}$	$m_{P Q}$	$x \rightarrow 2^{+}$	$m_{P Q}$
$\mathbf{1 . 9}$	3.9	2.1	4.1
$\mathbf{1 . 9 9}$	3.99	2.01	4.01
$\mathbf{1 . 9 9 9}$	3.999	2.001	4.001

Increasing and Decreasing Functions

Methods for identifying different types of functions and for what intervals they are increasing or decreasing.

- A function f is increasing on an interval (a, b) is $f\left(x_{2}\right)>f\left(x_{1}\right)$ when $x_{2}>x_{1}$ for all $x_{i} \in(a, b)$
- A function f is decreasing on an interval (a, b) is $f\left(x_{2}\right)<f\left(x_{1}\right)$ when $x_{2}>x_{1}$ for all $x_{i} \in(a, b)$
- Determine the turning points in a function and asymptotes. Express increasing and decreasing areas in interval notation omitting turning points and asymptotes

Example: $\quad f(x)=x^{3}-2 x$
Local Max: $(-2,16)$
Local Min: $(2,-16)$
$\therefore x \in(-\infty,-2) \cup(2, \infty)$

Calculus

Limits

A limit is the value a function approaches as the x-value approaches a number. Limits are behaviours for when x approaches a value

- A function has a limit L as $x \rightarrow a$

Formula: $\quad \lim _{x \rightarrow a} f(x)=L$

- Provided that value of $f(x)$ gets closer to L as x gets closer to a on both sides of $a, a^{ \pm}$

Example: $\quad f(x)=\frac{x-3}{x^{2}-4 x+3}=\frac{x-3}{(x-3)(x-1)}=\frac{1}{x-1}, x \neq 3,1$

$$
\begin{aligned}
& \lim _{x \rightarrow 3^{-}} f(x)=0.5 \\
& \lim _{x \rightarrow 3^{+}} f(x)=0.5 \\
& \therefore \lim _{x \rightarrow 3} f(x)=0.5
\end{aligned}
$$

- A limit exists if and only if both of its one-sided limits exist and are equal

Example: $\quad \lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a} f(x)=L$

- A limit exists as $x \rightarrow a$ (approaches), not equal $x=a$

Example: $\quad \lim _{x \rightarrow a} f(x) \neq f(a)$

- Multiple cases for limits including do not exist (DNE)

$$
\begin{array}{ll}
\text { Example: } & f(x)=\frac{1}{x^{2}} \\
& \lim _{x \rightarrow 0} f(x)=\mathrm{DNE}
\end{array}
$$

Properties of Limits

- For any constant function c and any real number a

Formula: $\quad \lim _{x \rightarrow a} C=C$

- For any function $f(x)$ and any real number a

Formula: $\quad \lim _{x \rightarrow a} x=a$

- For any 2 or more functions that have an existing limit with a constant, several rules apply

Formula: $\quad \lim _{x \rightarrow a} C f(x)=C \lim _{x \rightarrow a} f(x)$
Formula: $\quad \lim _{x \rightarrow a}[f(x) \pm g(x)]=\lim _{x \rightarrow a} f(x) \pm \lim _{x \rightarrow a} g(x)$
Formula: $\quad \lim _{x \rightarrow a}[f(x) \times g(x)]=\lim _{x \rightarrow a} f(x) \times \lim _{x \rightarrow a} g(x)$
Formula: $\quad \lim _{x \rightarrow a}[f(x) \div g(x)]=\lim _{x \rightarrow a} f(x) \div \lim _{x \rightarrow a} g(x), \lim _{x \rightarrow a} g(x) \neq 0$
Formula: $\quad \lim _{x \rightarrow a}[f(x)]^{2}=\lim _{x \rightarrow a}[f(x) \times f(x)]=\lim _{x \rightarrow a} f(x) \times \lim _{x \rightarrow a} f(x)$

$$
=\left[\lim _{x \rightarrow a} f(x)\right]^{2}
$$

Formula: \quad Let $f(x)=x$

$$
\lim _{x \rightarrow a} f(x)^{n}=\lim _{x \rightarrow a} x^{n}=\left[\lim _{x \rightarrow a} f(x)\right]^{n}=a^{n}
$$

- For any polynomial function, factor and cancel, rationalize, then substitute

$$
\begin{aligned}
\text { Formula: } & \lim _{x \rightarrow a} P(x)=P(a) \\
\text { Example: } & \\
& \lim _{x \rightarrow 2}\left(3 x^{2}+5 x-4\right) \\
& =\lim _{x \rightarrow 2}\left(3 x^{2}\right)+\lim _{x \rightarrow 2}(5 x)-\lim _{x \rightarrow 2} 4 \\
& =3 \lim _{x \rightarrow 2} x^{2}+5 \lim _{x \rightarrow 2} x-4 \\
& =3\left(\lim _{x \rightarrow 2} x\right)^{2}+5\left(\lim _{x \rightarrow 2} x\right)-4 \\
& =3(2)^{2}+5(2)-4 \\
& =18
\end{aligned}
$$

- Like polynomial functions, rational functions need to be factored and cancel in order to justify restrictions and the asymptotes. Disregard restrictions because limits solve for approaching value

Example: $\quad \lim _{x \rightarrow 3}\left(\frac{x^{2}-x-6}{x-3}\right)$

$$
\begin{aligned}
& =\frac{\lim _{x \rightarrow 3}\left(x^{2}-x-6\right)}{\lim _{x \rightarrow 3}(x-3)} \\
& =\frac{3^{2}-3-6}{3-3} \\
& =\frac{0}{0} \\
& =0 \text { improper solved }
\end{aligned}
$$

Example: $\quad \lim _{x \rightarrow 3}\left(\frac{x^{2}-x-6}{x-3}\right)$

$$
=\frac{\lim _{x \rightarrow 3}(x-3)(x+2)}{\lim _{x \rightarrow 3}(x-3)}
$$

$$
=\lim _{x \rightarrow 3}(x+2)
$$

$$
=3+2
$$

$$
=5
$$

Example: $\quad \lim _{x \rightarrow 1} \frac{x^{2}-2 x-8}{x+1}$
$=\lim _{x \rightarrow 1} \frac{(x+2)(x-4)}{x+1}$
Cannot solve, $\because x=1, \lim _{x \rightarrow 1} f(x)=D N E$

- Radical functions require rationalizing and must be considered from both left and right sides in order to form an appropriate limit

$$
\begin{array}{ll}
\text { Example: } \quad & \lim _{x \rightarrow 2} \sqrt{x-2} \\
& =\lim _{x \rightarrow 2} \sqrt{2 \times 2} \\
& =\sqrt{0} \\
& =0 \text { improper solve } \\
& \lim _{x \rightarrow 2^{+}}=0 \\
& \lim _{x \rightarrow 2^{-}}=D N E \\
& \therefore \lim _{x \rightarrow 2}=D N E \\
\text { Example: } \quad & \lim _{x \rightarrow 0} \frac{\sqrt{x+3}-\sqrt{3}}{x} \\
& =\lim _{x \rightarrow 0} \frac{\left[\frac{\sqrt{x+3}-\sqrt{3}}{x} \times \frac{\sqrt{x+3}+\sqrt{3}}{\sqrt{x+3}+\sqrt{3}}\right]}{}=\lim _{x \rightarrow 0} \frac{x+3-3}{x(\sqrt{x+3}+\sqrt{3})} \\
& =\lim _{x \rightarrow 0} \frac{x}{x(\sqrt{x+3}+\sqrt{3})} \\
& =\lim _{x \rightarrow 0} \frac{1}{(\sqrt{x+3}+\sqrt{3})} \\
& =\frac{1}{2 \sqrt{3}} \\
& =\frac{\sqrt{3}}{6}
\end{array}
$$

Continuity

A continuous function is a function that does not stop or have any breaks in the function.

- Continuous functions include linear, polynomial, and sinusoidal functions
- Discontinuous functions include rational functions (asymptotic or hole) and jump-discontinuity or piecewise functions
- Several definitions apply to a continuous function
- $f(a)$ is defined
- $\lim _{x \rightarrow a} f(x)$ is defined
- $\lim _{x \rightarrow a} f(x)=f(a)$
- Rules
- All polynomial, exponential, and sinusoidal functions are continuous infinitely, $x \in \mathbb{R}$
- All radical $(\sqrt[n]{x}, n$ is even) and all $\log x$ functions are continuous for $x>0$
- All radical ($\sqrt[n]{x}, n$ is odd) are continuous for all $x \in \mathbb{R}$
- All rational functions are made up of continuous polynomial functions and therefore continue everywhere except for restriction in the denominator
- f and g are continuous at $x=a$, the following apply: $(f \pm g)$ is continuous at $x=a$, $(f g)$ is continuous at $x=a$, and $\left(\frac{f}{g}\right)$ is continuous at $x=a, g(a) \neq 0$
- In order to remove a discontinuity, a function that has a hole in the graph needs a point; therefore redefine a hole function as a piecewise function including a point

Example: $\quad f(x)=\frac{2 x^{2}-5 x-3}{x-3}=\frac{(2 x+1)(x-3)}{x-3}=2 x+1$, hole at $x=3$

$$
\begin{aligned}
& \lim _{x \rightarrow 3} f(2 x+1)=7, \therefore P(3,7) \\
& \therefore f(x)=\left\{\begin{aligned}
\frac{2 x^{2}-5 x-3}{x-3}, & x \neq 0 \\
7, & x=3
\end{aligned}\right.
\end{aligned}
$$

- A jump-discontinuous function is a piecewise function
- A infinite discontinuous function is a rational function with a vertical asymptote(s)
- A removable discontinuous function is a rational function with a hole

Limits involved Infinity

Vertical asymptotes occur on the y-axis due to restrictions. Horizontal asymptotes occur on the x-axis due to end behaviour. Opposed to the traditional table of values method to prove and justify the equation of the asymptotes, limits are an alternative method.

Vertical Asymptotes

- Consider a simple rational function

$$
\begin{array}{ll}
\text { Example: } & f(x)=\frac{1}{x}, \lim _{x \rightarrow 0} \frac{1}{x} \\
& \text { As } x \rightarrow 0^{-}, \lim _{x \rightarrow 0^{-}} f(x)=-\infty \\
& \text { As } x \rightarrow 0^{+}, \lim _{x \rightarrow 0^{+}} f(x)=\infty \\
& \therefore \lim _{x \rightarrow 0} f(x)=D N E
\end{array}
$$

Example: $\quad f(x)=\frac{1}{x^{2}}$

$$
\therefore \lim _{x \rightarrow 0} f(x)=\infty
$$

- Calculating limits at restrictions requires the use of identifying the restriction (denominator)
factor(s) and then finding its limit from both the left and right sides. Provided the limit is $D N E$, then you have proved the vertical asymptote
- Find values approaching a from the left and right to see if the result is positive/negative infinity

Example:

$$
\begin{aligned}
& f(x)=\frac{3 x}{x-2}, x \neq 2 \\
& \lim _{x \rightarrow 2^{-}} \frac{3 x}{x-2}=-\infty \\
& \lim _{x \rightarrow 2^{+}} \frac{3 x}{x-2}=\infty \\
& \because \lim _{x \rightarrow 2} \frac{3 x}{x-2}=\text { DNE } \\
& \therefore \text { V.A.:x }=2
\end{aligned}
$$

- Working with trigonometric functions and limits

$$
\begin{array}{ll}
\text { Example: } & \lim _{x \rightarrow \frac{\pi}{2}} \tan x \\
& \lim _{x \rightarrow \frac{\pi}{2}^{-}} \frac{\sin x}{\cos x}=\infty \\
& \lim _{x \rightarrow \frac{\pi}{2}^{+}} \frac{\sin x}{\cos x}=-\infty \\
& \therefore \lim _{x \rightarrow \frac{\pi}{2}} \tan x=D N E, \therefore V . A .: x=\frac{\pi}{2}
\end{array}
$$

Horizontal Asymptotes

- Consider a simple rational function

$$
\begin{array}{ll}
\text { Example: } & f(x)=\frac{1}{x} \\
& \lim _{x \rightarrow \infty} \frac{1}{x}=0 \\
& \lim _{x \rightarrow-\infty} \frac{1}{x}=0 \\
& \therefore H . A .: y=0 \\
\text { Formula: } & \frac{1}{x^{n}} \text { as } x \rightarrow \pm \infty=0 \\
& \lim _{x \rightarrow \pm \infty} \frac{1}{x^{n}}=0
\end{array}
$$

- Calculating end behaviour requires that you force the identity $\lim _{x \rightarrow \pm \infty} \frac{1}{x^{n}}=0$ into any function in order to avoid $\frac{ \pm \infty}{ \pm \infty}=1$

Example: $\quad f(x)=\frac{3 x+2}{4 x-1}$

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{3 x+2}{4 x-1}=\frac{3 x+2}{4 x-1}\left(\frac{\frac{1}{x}}{\frac{1}{x}}\right)=\frac{\left(3+\frac{2}{x}\right)}{\left(4-\left(\frac{1}{x}\right)\right)}=\frac{3+0}{4+0}=\frac{3}{4} \\
& \therefore H . A .: y=\frac{3}{4}
\end{aligned}
$$

Example: $\quad f(x)=\frac{3 x+2}{x^{2}-4}$

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} \frac{3 x+2}{x^{2}-4}=\frac{3 x+2}{x^{2}-4}\left(\frac{\frac{1}{x^{2}}}{\frac{1}{x^{2}}}\right)=\left(\frac{\frac{3}{x}+\frac{2}{x^{2}}}{1-\frac{4}{x^{2}}}\right)=\frac{0+0}{1+0}=0 \\
& \therefore H . A .: y=0
\end{aligned}
$$

Derivatives

A derivative is the slope of a tangent line on any curve, also recognized as the instantaneous rate of change at any point on a curve. Calculated using first principles.

- Slope is calculated on 2 points off a curve. The line going through the points is called a secant
- Slope of the secant represents average rate of change of a function over the interval $a \leq x \leq b$
- Instantaneous rate of change is the slop of the tangent, with an interval of 0 ($a \leq x \leq b$)

Formula: $\quad m_{a b}=\frac{f(b)-f(a)}{b-a}$

- Instantaneous rate of change is the slope of the tangent, with an interval of 0 ($a \leq x \leq b$)
- Let the denominator or interval be h, and the slope of the secant approaches the slope of the tangent as the size of the interval approaches 0 . Use first principles formula with any notation (multiple notations; prime)

Formula: $\quad f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+b)-f(x)}{h}, x=a$

$$
f^{\prime}(x)=\frac{d y}{d x}=\frac{d f}{d x}=\frac{d}{d x} f(x)=y^{\prime}=m_{\text {tangent }}
$$

- The result of the formula will be the derivative of the formula, only works where a limit exists
- The derivative of any polynomial will be a degree less than the original function

Example: $\quad f(x)=4 x^{2}-3 x+5$

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{4(x+h)^{2}-3(x+h)+5-\left(4 x^{2}-3 x+5\right)}{h} \\
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{4 x^{2}+8 x h+4 h^{2}-3 x-3 h+5-4 x^{2}+3 x-5}{h}
\end{aligned}
$$

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{8 x h+4 h^{2}-3 h}{h}
$$

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{h(8 x+4 h-3)}{h}
$$

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} 8 x+4 h-3
$$

$$
f^{\prime}(x)=8 x+3
$$

$$
f^{\prime}(1)=5
$$

Differentiability

A function $f(x)$ is differentiable at $x=a$ if $f^{\prime}(a)$ exists. Differentiability is the ability to find the slopes of a tangent at $x=a$. To differentiate is to find the derivative. A function must be continuous and smooth in order to be differentiable for all $x=a$

- All polynomial, sinusoidal, and exponential functions are differentiable everywhere for all of $x=a$
- All logarithms and even radical functions are differentiable for $x>0$
- All odd radical functions are differentiable for all except $x=0$

Example: $\quad f(x)=\sqrt{x}, x=0$

$$
\begin{aligned}
& f^{\prime}(0)=\lim _{h \rightarrow 0}\left(\frac{\sqrt{x+h}-\sqrt{x}}{h}\right) \\
& f^{\prime}(0)=\lim _{h \rightarrow 0}\left(\frac{\sqrt{0+h}-\sqrt{0}}{h}\right)\left(\frac{\sqrt{0+h}+\sqrt{0}}{\sqrt{0+h}+\sqrt{0}}\right) \\
& f^{\prime}(0)=\lim _{h \rightarrow 0}\left(\frac{\sqrt{h}}{h}\right) \\
& f^{\prime}(0)=\lim _{h \rightarrow 0}\left(\frac{\sqrt{h}}{h}\right)\left(\frac{\sqrt{h}}{\sqrt{h}}\right) \\
& f^{\prime}(0)=\lim _{h \rightarrow 0}\left(\frac{h}{h \sqrt{h}}\right) \\
& f^{\prime}(0)=\lim _{h \rightarrow 0}\left(\frac{1}{\sqrt{h}}\right) \\
& f^{\prime}(0)=\frac{1}{\sqrt{0}} \\
& f^{\prime}(0)=D N E
\end{aligned}
$$

The Constant and Power Rule

Constant Rule

- Constant functions have the form $f(x)=c$ and a graph of a horizontal line
- Prove the constant rule using first principles

$$
\begin{aligned}
& \text { Example: } \quad \begin{aligned}
f(x) & =C \\
\quad f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{C-C}{h} \\
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{0}{h} \\
f^{\prime}(x) & =0 \\
\therefore \frac{d}{d x} C & =0, f(x)=C, f^{\prime}(x)=0
\end{aligned}
\end{aligned}
$$

Power Rule

- For linear functions the derivative is 1

$$
\begin{array}{ll}
\text { Example: } & f(x)=x \\
\qquad & f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{x+h+x}{h} \\
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{h}{h} \\
f^{\prime}(x) & =\lim _{h \rightarrow 0} 1 \\
f^{\prime}(x) & =1 \\
\therefore \frac{d x}{d x} & =1, f(x)=x, f^{\prime}(x)=1
\end{array}
$$

- The constant and linear rules are special cases of the power rule $y=C \rightarrow y=C x^{0}, y=x \rightarrow$ $y=x^{1}$
- Power rule can be proven through first principles for a power function (use the binomial expansion theorem)

Example: $\quad \frac{d}{d x} x^{n}$

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{(x+h)^{n}-x^{n}}{h}
\end{aligned}
$$

$$
f^{\prime}(x)
$$

$$
=\lim _{h \rightarrow 0} \frac{\left(\left(x^{n}-n x^{n-1} h+\left(\frac{n(n-1)}{h}\right) x^{n-2} h^{2}+\cdots+n x h^{n-1}+h^{n}\right)-x^{n}\right)}{h}
$$

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\left(n x^{n-1} h+\left(\frac{n(n-1)}{h}\right) x^{n-2} h^{2}+\cdots+n x h^{n-1}+h^{n}\right)}{h}
$$

$$
f^{\prime}(x)=n x^{n-1}
$$

$$
\therefore \frac{d}{d x} x^{n}=n x^{n-1}, f(x)=x^{n}, f^{\prime}(x)=n x^{n-1}
$$

Example: $\quad f(x)=x^{3}$

$$
f^{\prime}(x)=3 x^{2}
$$

Example:

$$
\begin{aligned}
& f(x)=x^{8} \\
& f^{\prime}(x)=8 x^{7}
\end{aligned}
$$

Example: $\quad f(x)=\frac{1}{x^{5}}$

$$
f^{\prime}(x)=x^{-5}=-5 x^{-6}=-\frac{5}{x^{6}}
$$

Example: $\quad f(x)=x^{\frac{3}{2}}$
$f^{\prime}(x)=\frac{3}{2} x^{\frac{1}{2}}=\frac{3}{2} \sqrt{x}$
Example: $\quad f(x)=\sqrt[3]{x}=x^{\frac{1}{3}}$

$$
f^{\prime}(x)=\frac{1}{3} x^{-\frac{2}{3}}=\frac{1}{3 \sqrt[3]{x^{2}}}
$$

- With a constant, use the power and limit rules to prove

Example: $\quad f(x)=3 x^{2}$

$$
\begin{aligned}
& \frac{d}{d x}(C f(x)), \text { Let } g(x)=C f(x) \\
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h} \\
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{C f(x+h)-C f(x)}{h} \\
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{C(f(x+h)-f(x))}{h} \\
& f^{\prime}(x)=\lim _{h \rightarrow 0} C \frac{f(x+h)-f(x)}{h} \\
& f^{\prime}(x)=\lim _{h \rightarrow 0} C \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& f^{\prime}(x)=C f^{\prime}(x)
\end{aligned}
$$

Example: $\quad f(x)=\frac{1}{-2 \sqrt[5]{x^{3}}}=-\frac{1}{2}\left(x^{-\frac{3}{5}}\right)$

$$
\begin{aligned}
f^{\prime}(x) & =\frac{3}{10}\left(x^{-\frac{8}{5}}\right) \\
f^{\prime}(x) & =\frac{3}{10 \sqrt[5]{x^{4}}}
\end{aligned}
$$

- All formulas for constant and power rules
$\begin{array}{ll}\text { Formula: } & \\ & f(x)=C \\ & f^{\prime}(x)=0\end{array}$
Formula: $\quad f(x)=x$

$$
f^{\prime}(x)=1
$$

Formula: $\quad f(x)=x^{n}$

$$
f^{\prime}(x)=n x^{n-1}
$$

Formula: $\quad f(x)=C x^{n}$ $f^{\prime}(x)=C\left(n x^{n-1}\right)$

The Sum, Difference, and Polynomial Rules

Recall polynomial functions are made by the addition and subtraction of individual terms and each term is its own function. The derivative of each individual function is the derivative of the whole polynomial function.

- The sum and difference rule can be proven using first principles

$$
\begin{array}{ll}
\text { Formula: } & p(x)=h(x) \pm k(x) \\
& p^{\prime}(x)=h^{\prime}(x) \pm k^{\prime}(x)
\end{array}
$$

- A polynomial function is the addition or subtraction of 2 or more power functions

Example: $\quad f(x)=-3 x^{5}+4 x^{2}-3 \sqrt{x}$

$$
\begin{aligned}
& f(x)=-3 x^{5}+4 x^{2}-3 x^{\frac{1}{2}} \\
& f^{\prime}(x)=-15 x^{4}+8 x-\frac{3}{2} x^{-\left(\frac{1}{2}\right)} \\
& f^{\prime}(x)=-15 x^{4}+8 x-\frac{3}{2 \sqrt{x}}
\end{aligned}
$$

Velocity and Acceleration

Velocity is the slope of a distance time graph, thus a derivative of a distance time graph. Acceleration is the slope of a velocity time graph, thus the derivative of a velocity time graph.

- Second derivatives is when you take the derivative of an already derived function

$$
\text { Formula: } \quad a(t)=v^{\prime}(t)=d^{\prime \prime}(t)
$$

The Product Rule

The derivative of a product is not the product of its derivatives. Prove using first principles.

- Expanding the function initially also works
- Of $f(x)=g(x) k(x)$ and $g(x)$ and $k(x)$ are differentiable

$$
\begin{array}{ll}
\text { Formula: } & f^{\prime}(x)=g(x) k^{\prime}(x)+k(x) g^{\prime}(x) \\
& \frac{d}{d x}[g(x) k(x)]=k(x) \frac{d}{d x} g(x)+g(x) \frac{d}{d x} k(x)
\end{array}
$$

The Chain Rule

Addresses the composite function in the form $f(g(x))$ where f and g are differentiable

- Use first principles to prove

$$
\begin{array}{ll}
\text { Formula: } & \frac{d}{d x}[F(x)]=\frac{d}{d g(x)} f(g(x))\left(\frac{d g(x)}{d x}\right) \\
& f^{\prime}(g(x)) g^{\prime}(x)
\end{array}
$$

Intervals of Increase and Decrease

Recall that intervals can be used to determine areas of increase and decrease within a function along with local minimum and maximums.

- If a function is increasing, the slope or Δy is positive
- If a function is decreasing, the slope or Δy is negative
- Δx is always positive (left to right)
- Test for increase and decrease in functions by taking the derivative of a function
- If $f^{\prime}(x)>0$ for all x of an interval, then $f(x)$ is increasing for that interval
- If $f^{\prime}(x)<0$ for all x of an interval, then $f(x)$ is decreasing for that interval

Example: $\quad f(x)=\frac{2}{3} x^{3}-2 x^{2}+16 x+1$
$f^{\prime}(x)=-2\left(x^{2}-2 x+8\right)$
$f^{\prime}(x)=-2(x+4)(x-2)$
$f^{\prime}(x)=0, x=-4,2$ Can represent a max or min

Interval $/ \boldsymbol{f}^{\prime}(\boldsymbol{x})$	$(-\infty,-4)$	$(-4,-2)$	$(2, \infty)$
$-\mathbf{2}$	-	-	-
$(\boldsymbol{x}+\mathbf{4})$	-	+	+
$(\boldsymbol{x}-\mathbf{2})$	-	-	+
Sign of $\boldsymbol{f}^{\prime}(\boldsymbol{x})$	-	+	+
Behaviour of $\boldsymbol{f}(\boldsymbol{x})$	Decrease	Increase	Decrease

$\therefore f(x)$ is increasing on $(-4,-2)$
$f(x)$ is decreasing on $(-\infty,-4) \cup(2, \infty)$
Local minimum at $x=-4$, local maximum at $x=2$

Minimums, Maximums, and the First Derivative

Minimums and maximums can be local or absolute.

- A function $f(x)$ has a local maximum (or minimum) at C if $f(C) \geq f(x)$ (or $f(X) \leq f(x)$) for all x close to C
- A function $f(x)$ has an absolute maximum (or minimum) at C if $f(C) \geq f(x)$ (or $f(X) \leq f(x)$) for all x in the domain of $f(x)$
- A maximum or minimum is when the slope is $0, f^{\prime}(x)=0$
- Not all $f^{\prime}(x)=0$ are maximums or minimums (turning points)
- Critical numbers are points on the graph where $f^{\prime}(C)=0$ or $f^{\prime}(C)=D N E$
- Critical numbers are when things are changing on the graph or something different occurs
- First derivatives test for local/absolute extrema. Let C be a critical number of function that is continuous over a given interval
- If $f(x)$ changes from negative to positive at C, then the point $(C, f(C))$ is a minimum
- If $f(x)$ changes from positive to negative at C, then the point $(C, f(C))$ is a maximum
- If $f^{\prime}(x)$ does not change signs then $f(C)$ is not a maximum or minimum
- If $f^{\prime}(x)$ is negative for all $x<C$ and $f^{\prime}(x)$ is positive for all $x>C$, then $f(C)$ is an absolute minimum
- If $f^{\prime}(x)$ is positive for all $x<C$ and $f^{\prime}(x)$ is negative for all $x>C$, then $f(C)$ is an absolute maximum

Inflection Point, Concavity, and the Second Derivative

The second derivative of a function reveals the point of inflection and concavity.

- Concavity is the curvature (shape) of the graph
- Curvature depends on a change in slope
- If the ends of the graph point up, then curvature is concave up
- If the ends of the graph point down, then curvature is concave down
- $f(x)$ is concave up if $f^{\prime}(x)$ is increasing
- $f(x)$ is concave down if $f^{\prime}(x)$ is decreasing
- For a differentiable function where a second derivative exists:
- $f(x)$ is concave up if $f^{\prime \prime}(x)>0$; +
- $f(x)$ is concave down if $f^{\prime \prime}(x)<0$; -
- A point of inflection is a point on the graph where curvature changes from concave up to down (vice versa) if $(C, f(C))$ is an inflection point then $f^{\prime \prime}(x)=0$ provided $f^{\prime \prime}(C)$ exists

Oblique Asymptotes

The end behaviour for a rational function. Is a slant asymptote if the vertical distance between the curve $y=f(x)$ and the slanted line approaches 0 as $\rightarrow \infty$.

- Occurs when the numerator is a degree less than the denominator

$$
\text { Formula: } \quad \lim _{x \rightarrow \infty}[f(x)-(m x+b)]=0
$$

- If $f(x)=\frac{1}{x^{n}}, H . A .: y=0$
- If $f(x)=\frac{a x^{n}}{b x^{n}}, H . A .: y=\frac{a}{b}$
- If $f(x)=\frac{x^{n}}{x^{n-1}}, H \cdot A .: y=m x+b$

$$
\begin{array}{ll}
\text { Example: } & y=\frac{x^{2}-x-6}{x-1} \\
& y=x-\frac{6}{x-1}
\end{array}
$$

- The quotient is the oblique asymptote

Curve Sketching

Using the original function and the first and second derivatives, it is possible to sketch a graph.

- Working with $f(x)$
- Factor
- Find zeroes (x-intercepts)
- Find y-intercept
- End behaviour
- Restrictions
- Working with $f^{\prime}(x)$
- Factor
- $f^{\prime}(x)=0$ are critical numbers
- Maximum and minimum in a behaviour chart
- Working with $f^{\prime \prime}(x)$
- Factor
- $f^{\prime \prime}(x)=0$ are possible inflections
- Inflection/Curvature in behaviour chart

Example: $\quad f(x)=\frac{x^{3}}{x^{2}-4}$
$f(x)=\frac{x^{3}}{(x-2)(x+2)}$
$x=0, x \neq \pm 2$
V.A.: $x= \pm 2$
y-int: $f(0)=0$
End Behaviour: Oblique
$f(x)=x+\frac{4 x}{x^{2}-4}$
O. A.: $y=x$
$f^{\prime}(x)=\frac{x^{4}-12 x^{2}}{\left(x^{2}-4\right)^{2}}$
$f^{\prime}(x)=\frac{x^{2}\left(x^{2}-12\right)}{\left(x^{2}-4\right)^{2}}$
$f^{\prime}(x)=\frac{x^{2}(x-\sqrt{12})(x+\sqrt{12})}{\left(x^{2}-4\right)^{2}}$
Critical Numbers: $f^{\prime}(x)=0$
$x= \pm \sqrt{12}, 0, x \neq \pm 2$
$x= \pm 2$
$f(\pm \sqrt{12})=5.2(\min),-5.2(\max)$ Local
$f^{\prime \prime}(x)=\frac{8 x\left(x^{2}+12\right)}{(x-2)^{3}(x+2)^{3}}$
$f^{\prime \prime}(0)=0, V \cdot A:: x= \pm 2 ; f(0)=$ Inflection

Limits of Trigonometric Functions

Solve trigonometric functions using several methods including table of values, substitution, factor and rationalizing, and squeeze theorem.

- Solving limits using substitution

$$
\begin{array}{ll}
\text { Example: } & \lim _{x \rightarrow \pi} \cos x \\
& =\cos \pi \\
& =1 \\
\text { Example: } & \lim _{x \rightarrow \frac{\pi}{4}}(\sin x-\cos x) \\
& =\sin \frac{\pi}{4}-\cos \frac{\pi}{4} \\
& =\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}} \\
& =0
\end{array}
$$

- Solving limits through factoring

Example: $\quad \lim _{x \rightarrow \frac{\pi}{2}}\left(\frac{\sin ^{2} x+\cot x-1}{\cos x}\right)$

$$
\begin{aligned}
& \lim _{x \rightarrow \frac{\pi}{2}}\left(\frac{\left(1-\cos ^{2} x\right)+\cot x-1}{\cos x}\right) \\
& \lim _{x \rightarrow \frac{\pi}{2}}\left(\frac{\left(-\cos ^{2} x\right)+\cot x}{\cos x}\right) \\
& \lim _{x \rightarrow \frac{\pi}{2}}\left(\frac{-\cos ^{2} x+\frac{\cos x}{\sin x}}{\cos x}\right) \\
& \lim _{x \rightarrow \frac{\pi}{2}}-\cos x+\frac{1}{\sin x} \\
& =-\cos \frac{\pi}{2}+\frac{1}{\sin \frac{\pi}{2}} \\
& =1
\end{aligned}
$$

- Solving limits through rationalizing

$$
\begin{array}{ll}
\text { Example: } & \lim _{x \rightarrow 0}\left(\frac{\sin x}{\sqrt{\sin x}}\right) \\
& \lim _{x \rightarrow 0}\left(\frac{\sin x}{\sqrt{\sin x}} \times \frac{\sqrt{\sin x}}{\sqrt{\sin x}}\right) \\
& \lim _{x \rightarrow 0}\left(\frac{\sin x(\sqrt{\sin x})}{\sqrt{\sin x}}\right) \\
& =\sqrt{\sin 0} \\
& =0
\end{array}
$$

- Unable to factor, rationalize, or substitute, use squeeze theorem
- $f(x) \leq g(x) \leq h(x)$ for all x then $\lim _{x \rightarrow a} f(x)=\lim _{\mathrm{x} \rightarrow \mathrm{a}} h(x)=L$
- $\therefore \lim _{x \rightarrow a} g(x)=L$

$$
\text { Example: } \begin{array}{ll}
& \lim _{x \rightarrow 0} x^{2} \cos \left(\frac{1}{x}\right) \\
& \cos a \text { has a minimum and maximum of } 1 \\
-1 \leq \cos a \leq 1 \\
-1 \leq \cos \frac{1}{x} \leq 1 \\
& -x^{2} \leq x^{2} \cos \frac{1}{x} \leq x^{2} \\
& \lim _{x \rightarrow 0}\left(-x^{2}\right)=0 \\
& \lim _{x \rightarrow 0}\left(x^{2}\right)=0 \\
& \therefore \text { L.S. and R.S. }=0, \therefore \lim _{x \rightarrow 0} x^{2} \cos \left(\frac{1}{x}\right)=0
\end{array}
$$

- Definition: $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$

Derivatives of Trigonometric Functions

All derivative rules apply to trigonometric functions

- Definition: $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$
- Definition: $\lim _{x \rightarrow 0} \frac{\cos x-1}{x}=0$
- First principles can solve trigonometric functions

Example: $\quad f(x)=\sin x$

$$
f^{\prime}(x)=\cos x
$$

$$
f^{\prime \prime}(x)=-\sin x
$$

$$
f^{\prime \prime \prime}(x)=-\cos x
$$

$$
f^{\prime \prime \prime \prime}(x)=\sin x \ldots
$$

- Apply derivative rules

Example: $\quad f(x)=3 \sin x+2 x^{2}$

$$
f^{\prime}(x)=3 \cos x+4 x
$$

Example: $\quad g(x)=\sin x \cos x$
$g(x)=\cos x \cos x-\sin x \sin x$
$g^{\prime}(x)=\cos ^{2} x-\sin ^{2} x$
$g^{\prime}(x)=\cos 2 x$
Example: $\quad h(x)=\sin \sqrt{x}=\sin x^{\frac{1}{2}}$

$$
h^{\prime}(x)=\left(\cos x^{\frac{1}{2}}\right)\left(\frac{1}{2} x^{-\frac{1}{2}}\right)
$$

$$
h^{\prime}(x)=\frac{\cos \sqrt{x}}{2 \sqrt{x}}
$$

Example: $\quad m(x)=\sqrt{\left(\cos \left(x^{2}+4 x\right)\right)}=\cos \left(x^{2}+4 x\right)^{\frac{1}{2}}$
$m^{\prime}(x)=\frac{1}{2}\left(\cos \left(x^{2}+4 x\right)\right)^{-\frac{1}{2}}\left(-\sin \left(x^{2}+4 x\right)\right)(2 x+4)$
$m^{\prime}(x)=\frac{-(x+2) \sin \left(x^{2}+4 x\right)}{\sqrt{\cos \left(x^{2}+4 x\right.}}$

Derivatives of Exponential Functions

The derivative of any exponential function is an exponential function multiplied with a constant.

- If $f(x)=a^{x}, f^{\prime}(x)=\left[f^{\prime}(0)\right][f(x)]$
- First principles can solve exponential functions

Example: $\quad f(x)=a^{x}$

$$
f^{\prime}(x)=a^{x} C
$$

- If $y=2^{x}$ the derivative is below $f(x)$, compression

$$
\text { - } \lim _{h \rightarrow 0}\left(\frac{a^{h}-1}{h}\right)<1
$$

- If $y=3^{x}$ the derivative is above $f(x)$, expansion

$$
\text { - } \lim _{h \rightarrow 0}\left(\frac{a^{h}-1}{h}\right)>1
$$

- The base of the exponential function between 2 and 3 will have a derivative the same as the original function
- $e \cong 2.718 \ldots$
- $e=\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}$
- $1=\lim _{x \rightarrow 0}\left(\frac{e^{x}-1}{x}\right)$

Example: $\quad f(x)=e^{2 x}$

$$
f^{\prime}(x)=2 e^{2 x}
$$

Example: $\quad f(x)=2 e^{-x}$

$$
f^{\prime}(x)=-2 e^{-x}
$$

Example: $\quad f(x)=e^{1-2 x}$

$$
f^{\prime}(x)=-2 e^{1-2 x}
$$

The Natural Logarithm

The natural logarithm has a base e and is written as a lawn function.

- An exponentials inverse is a logarithmic function and vice-versa

Formula: $\quad \log _{e} x=\ln x$

- The lawn function can be used in place of a logarithm function because a logarithm function has a base 10

Example: $\quad y=e^{x}$
$y=\ln x$
Example: $\quad \ln e^{x}$
$=x \ln e$
$=x(1)$
$=x$
Example: $\quad e^{\ln x}$
$\ln a=\ln x$
$a=x$
$e^{\ln x}=x$

- e and \ln cancel each other out because they are inverse functions

Example: $\quad e^{x}=7$
$\ln e^{x}=\ln 7$
$x=\ln 7$
Example: $\quad \ln x=3$
$e^{\ln x}=e^{3}$
$x=e^{3}$
Example: $\quad \ln (5 x-2)=4$
$e^{\ln (5 x-2)}=e^{4}$
$5 x-2=e^{4}$
$x=\frac{e^{4}+2}{5}$

Derivatives of Exponential Functions

A pattern can be found when looking for the coefficient values. The pattern follows the lawn function.

- The constant depends on the base and will be different for each exponential function
- The value of the constant is $f^{\prime}(0)$

$$
\begin{array}{ll}
\text { Formula: } & f(x)=a^{x} \\
& f^{\prime}(x)=\ln a \cdot a^{x}
\end{array}
$$

